May 2, 2024
A swapped genetic code prevents viral infections and gene transfer – Nature

A swapped genetic code prevents viral infections and gene transfer – Nature

  • Church, G. M. & Regis, E. Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves (Basic Books, 2014).

  • Lajoie, M. J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, N. J. & Isaacs, F. J. Genomic recoding broadly obstructs the propagation of horizontally transferred genetic elements. Cell Syst. 3, 199–207 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ostrov, N. et al. Design, synthesis, and testing toward a 57-codon genome. Science 353, 819–822 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujino, T., Tozaki, M. & Murakami, H. An amino acid-swapped genetic code. ACS Synth. Biol. 9, 2703–2713 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abrahão, J. et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat. Commun. 9, 749 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgado, S. & Vicente, A. C. Global in-silico scenario of tRNA genes and their organization in virus genomes. Viruses 11, 180 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandell, D. J. et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature 518, 55–60 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, X. et al. Systematic strategies for developing phage resistant Escherichia coli strains. Nat. Commun. 13, 4491 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barone, P. W. et al. Viral contamination in biologic manufacture and implications for emerging therapies. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0507-2 (2020).

  • Baltz, R. H. Bacteriophage-resistant industrial fermentation strains: from the cradle to CRISPR/Cas9. J. Ind. Microbiol. Biotechnol. 45, 1003–1006 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ostrov, N. et al. Synthetic genomes with altered genetic codes. Curr. Opin. Syst. Biol. https://doi.org/10.1016/j.coisb.2020.09.007 (2020).

    Article 

    Google Scholar
     

  • Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature https://doi.org/10.1038/s41586-019-1192-5 (2019).

  • Yang, J. Y. et al. Degradation of host translational machinery drives tRNA acquisition in viruses. Cell Syst. 12, 771–779 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, S. L. et al. Experimental validation that human microbiome phages use alternative genetic coding. Nat. Commun. 13, 5710 (2022).

  • Borges, A. L. et al. Widespread stop-codon recoding in bacteriophages may regulate translation of lytic genes. Nat. Microbiol. 7, 918–927 (2022).

  • Abe, T. et al. tRNADB-CE 2011: tRNA gene database curated manually by experts. Nucleic Acids Res. 39, D210–D213 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alamos, P. et al. Functionality of tRNAs encoded in a mobile genetic element from an acidophilic bacterium. RNA Biol. 15, 518–527 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Santamaría-Gómez, J. et al. Role of a cryptic tRNA gene operon in survival under translational stress. Nucleic Acids Res. 49, 8757–8776 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bustamante, P. et al. ICEAfe1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans. J. Mol. Microbiol. Biotechnol. 22, 399–407 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Bowden, R. J., Simas, J. P., Davis, A. J. & Efstathiou, S. Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J. Gen. Virol. 78, 1675–1687 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maffei, E. et al. Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLOS Biol. 19, e3001424 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brok-Volchanskaya, V. S. et al. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage. Nucleic Acids Res. 36, 2094–2105 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miles, Z. D., McCarty, R. M., Molnar, G. & Bandarian, V. Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification. Proc. Natl Acad. Sci. USA 108, 7368–7372 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, R.-J., Long, T., Zhou, M., Zhou, X.-L. & Wang, E.-D. tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily. Nucleic Acids Res. 43, 7489–7503 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, M. & Kubyshkin, V. How to quantify a genetic firewall? A polarity-based metric for genetic code engineering. ChemBioChem 22, 1268–1284 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X.-L. et al. Two conformations of a crystalline human tRNA synthetase–tRNA complex: implications for protein synthesis. EMBO J. 25, 2919–2929 (2006).

  • Kobayashi, T. et al. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nat. Struct. Mol. Biol. 10, 425–432 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Giege, R., Sissler, M. & Florentz, C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26, 5017–5035 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Church, G., Baynes, B. & Pitcher, E. Hierarchical assembly methods for genome engineering. PCT/US2006/001427 Patent application (2007).

  • Zürcher, J. F. et al. Refactored genetic codes enable bidirectional genetic isolation. Science https://doi.org/10.1126/science.add8943 (2022).

  • Łoś, J. M., Golec, P., Węgrzyn, G., Węgrzyn, A. & Łoś, M. Simple method for plating Escherichia coli bacteriophages forming very small plaques or no plaques under standard conditions. Appl. Env. Microbiol. 74, 5113–5120 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Abedon, S. T. & Yin, J. in Bacteriophages: Methods and Protocols Vol. 1 (eds Clokie, M. R. J. & Kropinski, A. M.) 161–174 https://doi.org/10.1007/978-1-60327-164-6_17 (Humana, 2009).

  • Serwer, P., Hayes, S. J., Thomas, J. A. & Hardies, S. C. Propagating the missing bacteriophages: a large bacteriophage in a new class. Virology J. 4, 21 (2007).

    Article 

    Google Scholar
     

  • Wang, J., Yashiro, Y., Sakaguchi, Y., Suzuki, T. & Tomita, K. Mechanistic insights into tRNA cleavage by a contact-dependent growth inhibitor protein and translation factors. Nucleic Acids Res. 50, 4713–4731 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomita, K., Ogawa, T., Uozumi, T., Watanabe, K. & Masaki, H. A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc. Natl Acad. Sci. USA 97, 8278–8283 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takai, K., Takaku, H. & Yokoyama, S. In vitro codon-reading specificities of unmodified tRNA molecules with different anticodons on the sequence background of Escherichia coli tRNASer1. Biochem. Biophys. Res. Commun. 257, 662–667 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takai, K., Okumura, S., Hosono, K., Yokoyama, S. & Takaku, H. A single uridine modification at the wobble position of an artificial tRNA enhances wobbling in an Escherichia coli cell-free translation system. FEBS Lett. https://doi.org/10.1016/S0014-5793(99)00255-0 (1999).

  • Kunjapur, A. M. et al. Synthetic auxotrophy remains stable after continuous evolution and in coculture with mammalian cells. Sci. Adv. 7, eabf5851 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rovner, A. J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyerges, Á. et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1520040113 (2016).

  • Wannier, T. M. et al. Adaptive evolution of genomically recoded Escherichia coli. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1715530115 (2018).

  • Kirchberger, P. C. & Ochman, H. Resurrection of a global, metagenomically defined gokushovirus. eLife 9, e51599 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Multiplex base editing to convert TAG into TAA codons in the human genome. Nat. Commun. 13, 4482 (2022).

  • Boeke, J. D. et al. The Genome Project-Write. Science https://doi.org/10.1126/science.aaf6850 (2016).

  • Dai, J., Boeke, J. D., Luo, Z., Jiang, S. & Cai, Y. Sc3.0: revamping and minimizing the yeast genome. Genome Biol. 21, 205 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonilla, N. et al. Phage on tap–a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ 4, e2261 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terzian, P. et al. PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genomics Bioinform. 3, lqab067 (2021).

    Article 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodall, E. C. A. et al. The essential genome of Escherichia coli K-12. mBio 9, e02096-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotech. 31, 233–239 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Umenhoffer, K. et al. Genome-wide abolishment of mobile genetic elements using genome shuffling and CRISPR/Cas-assisted MAGE allows the efficient stabilization of a bacterial chassis. ACS Synth. Biol. 6, 1471–1483 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szili, P. et al. Rapid evolution of reduced susceptibility against a balanced dual-targeting antibiotic through stepping-stone mutations. Antimicrob. Agents and Chemother. 63, e00207-19 (2019).

  • Kunjapur, A. M. et al. Engineering posttranslational proofreading to discriminate nonstandard amino acids. Proc. Natl Acad. Sci. USA 115, 619–624 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hossain, A. et al. Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nat. Biotechnol. 38, 1466–1475 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohler, K. et al. MS-READ: quantitative measurement of amino acid incorporation. Biochim. Biophys. Acta Gen. Subj. 1861, 3081–3088 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Käll, L., Storey, J. D. & Noble, W. S. Non-parametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry. Bioinformatics 24, i42–i48 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyerges, A. et al. Swapped genetic code block viral infections and gene transfer (MSV000089854). MassIVE https://doi.org/10.25345/C5FF3M41W (2023).

  • Source link