April 26, 2024

A white dwarf accreting planetary material determined from X-ray observations – Nature

  • Koester, D., Gänsicke, B. T. & Farihi, J. The frequency of planetary debris around young white dwarfs. Astron. Astrophys. 566, A34 (2014).

    ADS 

    Google Scholar
     

  • Paquette, C., Pelletier, C., Fontaine, G. & Michaud, G. Diffusion coefficients for stellar plasmas. Astrophys. J. Suppl. 61, 177–195 (1986).

    ADS 

    Google Scholar
     

  • Koester, D. Accretion and diffusion in white dwarfs. New diffusion timescales and applications to GD 362 and G 29-38. Astron. Astrophys. 498, 517–525 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Zuckerman, B., Koester, D., Melis, C., Hansen, B. M. & Jura, M. The chemical composition of an extrasolar minor planet. Astrophys. J. 671, 872–877 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Xu, S. et al. The chemical composition of an extrasolar Kuiper-Belt-Object. Astrophys. J. Lett. 836, L7 (2017).

    ADS 

    Google Scholar
     

  • Gänsicke, B. T. et al. Accretion of a giant planet onto a white dwarf star. Nature 576, 61–64 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Zuckerman, B. & Becklin, E. E. Excess infrared radiation from a white dwarf—an orbiting brown dwarf? Nature 330, 138–140 (1987).

    ADS 

    Google Scholar
     

  • Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf. Nature 526, 546–549 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauer, E. B. & Bildsten, L. Polluted white dwarfs: mixing regions and diffusion timescales. Astrophys. J. 872, 96 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Cunningham, T., Tremblay, P.-E., Freytag, B., Ludwig, H.-G. & Koester, D. Convective overshoot and macroscopic diffusion in pure-hydrogen-atmosphere white dwarfs. Mon. Not. R. Astron. Soc. 488, 2503–2522 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Heinonen, R. A. et al. Diffusion coefficients in the envelopes of white dwarfs. Astrophys. J. 896, 2 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Kuijpers, J. & Pringle, J. E. Comments on radial white dwarf accretion. Astron. Astrophys. 114, L4–L6 (1982).

    ADS 

    Google Scholar
     

  • Woelk, U. & Beuermann, K. Temperature structure of a particle-heated magnetic atmosphere. Astron. Astrophys. 280, 169–173 (1993).

    ADS 

    Google Scholar
     

  • Graham, J. R., Matthews, K., Neugebauer, G. & Soifer, B. T. The infrared excess of G29–38: a brown dwarf or dust? Astrophys. J. 357, 216 (1990).

    ADS 

    Google Scholar
     

  • Koester, D., Provencal, J. & Shipman, H. L. Metals in the variable DA G29-38. Astron. Astrophys. 320, L57–L59 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Jura, M. A tidally disrupted asteroid around the white dwarf G29-38. Astrophys. J. Lett. 584, L91–L94 (2003).

    ADS 

    Google Scholar
     

  • Xu, S., Jura, M., Koester, D., Klein, B. & Zuckerman, B. Elemental compositions of two extrasolar rocky planetesimals. Astrophys. J. 783, 79 (2014).

    ADS 

    Google Scholar
     

  • Coutu, S. et al. Analysis of helium-rich white dwarfs polluted by heavy elements in the Gaia era. Astrophys. J. 885, 74 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Mukai, K. X-ray emissions from accreting white dwarfs: a review. Publ. Astron. Soc. Pacif. 129, 062001 (2017).

    ADS 

    Google Scholar
     

  • Patterson, J. & Raymond, J. C. X-ray emission from cataclysmic variables with accretion disks. I. Hard X-rays. Astrophys. J. 292, 535–549 (1985).

    ADS 
    CAS 

    Google Scholar
     

  • Jura, M., Muno, M. P., Farihi, J. & Zuckerman, B. X-ray and infrared observations of two externally polluted white dwarfs. Astrophys. J. 699, 1473–1479 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Farihi, J. et al. Magnetism, X-rays and accretion rates in WD 1145+017 and other polluted white dwarf systems. Mon. Not. R. Astron. Soc. 474, 947–960 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Weisskopf, M. C., Tananbaum, H. D., Van Speybroeck, L. P. & O’Dell, S. L. Chandra X-ray Observatory (CXO): overview. Proc. SPIE 4012, 2–16 (2000).

    ADS 

    Google Scholar
     

  • Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).


    Google Scholar
     

  • Kylafis, N. D. & Lamb, D. Q. X-ray and UV radiation from accreting degenerate dwarfs. II. Astrophys. J. Suppl. 48, 239–272 (1982).

  • Ghosh, P. & Lamb, F. K. Disk accretion by magnetic neutron stars. Astrophys. J. Lett. 223, L83–L87 (1978).

    ADS 

    Google Scholar
     

  • Metzger, B. D., Rafikov, R. R. & Bochkarev, K. V. Global models of runaway accretion in white dwarf debris discs. Mon. Not. R. Astron. Soc. 423, 505–528 (2012).

    ADS 

    Google Scholar
     

  • Farihi, J., Jura, M. & Zuckerman, B. Infrared signatures of disrupted minor planets at white dwarfs. Astrophys. J. 694, 805–819 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Debes, J. H. & López-Morales, M. A second look at the metal line variability of G29-38. Astrophys. J. Lett. 677, L43 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • The Chandra Proposers’ Observatory Guide (Chandra X-ray Center, accessed 30 October 2021); https://cxc.cfa.harvard.edu/proposer/POG/html/index.html

  • Fruscione, A. et al. CIAO: Chandra’s data analysis system. Proc. SPIE 6270, 62701V (2006).


    Google Scholar
     

  • Li, T. P. & Ma, Y. Q. Analysis methods for results in gamma-ray astronomy. Astrophys. J. 272, 317–324 (1983).

    ADS 

    Google Scholar
     

  • Gaia Collaboration et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).


    Google Scholar
     

  • Kraft, R. P., Burrows, D. N. & Nousek, J. A. Determination of confidence limits for experiments with low numbers of counts. Astrophys. J. 374, 344–355 (1991).

    ADS 

    Google Scholar
     

  • Freeman, P. E., Kashyap, V., Rosner, R. & Lamb, D. Q. A wavelet-based algorithm for the spatial analysis of Poisson data. Astrophys. J. Suppl. 138, 185–218 (2002).

    ADS 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnaud, K. A. XSPEC: the first ten years. Astron. Soc. Pac. Conf. Ser. 101, 17–20 (1996).

    ADS 

    Google Scholar
     

  • Foster, A. R., Ji, L., Smith, R. K. & Brickhouse, N. S. Updated atomic data and calculations for x-ray spectroscopy. Astrophys. J. 756, 128 (2012).

    ADS 

    Google Scholar
     

  • Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. the chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Redfield, S. & Linsky, J. L. The three-dimensional structure of the warm local interstellar medium. II. The Colorado model of the local interstellar cloud. Astrophys. J. 534, 825–837 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979).

    ADS 

    Google Scholar
     

  • Patterson, J., Zuckerman, B., Becklin, E. E., Tholen, D. J. & Hawarden, T. the infrared and optical pulsations of G29-38. Astrophys. J. 374, 330–339 (1991).

    ADS 

    Google Scholar
     

  • Kleinman, S. J. et al. Understanding the cool DA white dwarf pulsator, G29-38. Astrophys. J. 495, 424–434 (1998).

    ADS 

    Google Scholar
     

  • McCleery, J. et al. Gaia white dwarfs within 40 pc II: the volume-limited Northern hemisphere sample. Mon. Not. R. Astron. Soc. 499, 1890–1908 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Gentile Fusillo, N. P. et al. A catalogue of white dwarfs in Gaia EDR3. Preprint at https://arxiv.org/abs/2106.07669 (2021).

  • Gianninas, A., Bergeron, P. & Ruiz, M. T. A spectroscopic survey and analysis of bright, hydrogen-rich white dwarfs. Astrophys. J. 743, 138 (2011).

    ADS 

    Google Scholar
     

  • Tremblay, P. E. & Bergeron, P. Spectroscopic analysis of DA white dwarfs: Stark broadening of hydrogen lines including nonideal effects. Astrophys. J. 696, 1755–1770 (2009).

    ADS 

    Google Scholar
     

  • Tremblay, P.-E., Ludwig, H.-G., Steffen, M. & Freytag, B. Spectroscopic analysis of DA white dwarfs with 3D model atmospheres. Astron. Astrophys. 559, A104 (2013).


    Google Scholar
     

  • Koester, D., Kepler, S. O. & Irwin, A. W. New white dwarf envelope models and diffusion. Application to DQ white dwarfs. Astron. Astrophys. 635, A103 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Freytag, B., Ludwig, H.-G. & Steffen, M. Hydrodynamical models of stellar convection. The role of overshoot in DA white dwarfs, A-type stars, and the Sun. Astron. Astrophys. 313, 497–516 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Kupka, F., Zaussinger, F. & Montgomery, M. H. Mixing and overshooting in surface convection zones of DA white dwarfs: first results from ANTARES. Mon. Not. R. Astron. Soc. 474, 4660–4671 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Source link