May 24, 2024
ABP1–TMK auxin perception for global phosphorylation and auxin canalization – Nature

ABP1–TMK auxin perception for global phosphorylation and auxin canalization – Nature

  • Friml, J. Fourteen stations of auxin. Cold Spring Harb. Perspect. Biol. 14, a039859 (2021).

  • Lavy, M. & Estelle, M. Mechanisms of auxin signaling. Development 143, 3226–3229 (2016).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Morffy, N. & Strader, L. C. Structural aspects of auxin signaling. Cold Spring Harb. Perspect. Biol. 14, a039883 (2021).

  • Napier, R. The story of auxin-binding protein 1 (ABP1). Cold Spring Harb. Perspect. Biol. 13, a039909 (2021).

  • Fendrych, M. et al. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4, 453–459 (2018).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Dindas, J. et al. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat. Commun. 9, 1174 (2018).

    PubMed Central 
    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallei, M., Luschnig, C. & Friml, J. Auxin signalling in growth: Schrödinger’s cat out of the bag. Curr. Opin. Plant Biol. 53, 43–49 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li, L., Gallei, M. & Friml, J. Bending to auxin: fast acid growth for tropisms. Trends Plant Sci. 27, 440–449 (2022).

  • Kuhn, A. et al. Direct ETTIN–auxin interaction controls chromatin states in gynoecium development. eLife 9, e51787 (2020).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Cao, M. et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568, 240–243 (2019).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dubey, S. M., Serre, N. B. C., Oulehlová, D., Vittal, P. & Fendrych, M. No time for transcription-rapid auxin responses in plants. Cold Spring Harb. Perspect. Biol. 13, a039891 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Adamowski, M. & Friml, J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27, 20–32 (2015).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Narasimhan, M. et al. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. Plant Physiol. 186, 1122–1142 (2021).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Robert, S. et al. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143, 111–121 (2010).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Sachs, T. The induction of transport channels by auxin. Planta 127, 201–206 (1975).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Han, H. et al. Rapid auxin-mediated phosphorylation of myosin regulates trafficking and polarity in Arabidopsis. Preprint at bioRxiv https://doi.org/10.1101/2021.04.13.439603 (2021).

  • Li, L. et al. Cell surface and intracellular auxin signalling for H + fluxes in root growth. Nature 599, 273–277 (2021).

    CAS 
    PubMed Central 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lin, W. et al. TMK-based cell-surface auxin signaling activates cell wall acidification. Nature 599, 278–282 (2021).

  • McLaughlin, H. M., Ang, A. C. H. & Østergaard, L. Noncanonical auxin signaling. Cold Spring Harb. Perspect. Biol. 13, a039917 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hertel, R., Thomson, K. S. & Russo, V. E. In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107, 325–340 (1972).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Xu, T. et al. Cell surface ABP1–TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025–1028 (2014).

    CAS 
    PubMed Central 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gao, Y. et al. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc. Natl Acad. Sci. USA 112, 2275–2280 (2015).

    CAS 
    PubMed Central 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Grones, P. et al. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. J. Exp. Bot. 66, 5055–5065 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Michalko, J., Dravecká, M., Bollenbach, T. & Friml, J. Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene. F1000Res. 4, 1104 (2015).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Dai, X. et al. Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene. Nature Plants 1, 15183 (2015).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Smakowska-Luzan, E. et al. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553, 342–346 (2018).

    CAS 
    PubMed Central 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Woo, E. J. et al. Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J. 21, 2877–2885 (2002).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Tian, H., Klambt, D. & Jones, A. M. Auxin-binding protein 1 does not bind auxin within the endoplasmic reticulum despite this being the predominant subcellular location for this hormone receptor. J. Biol. Chem. 270, 26962–26969 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gelová, Z. et al. Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Sci. 303, 110750 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahlke, R. I. et al. Protoplast swelling and hypocotyl growth depend on different auxin signaling pathways. Plant Physiol. 175, 982–994 (2017).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayakannan, M., Bose, J., Babourina, O., Rengel, Z. & Shabala, S. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J. Exp. Bot. 64, 2255–2268 (2013).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Paponov, I. A. et al. Auxin-induced plasma membrane depolarization is regulated by auxin transport and not by AUXIN BINDING PROTEIN1. Front. Plant Sci. 9, 1953 (2019).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Serre, N. B. C. et al. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nat. Plants 7, 1229–1238 (2021).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Tominaga, M. & Ito, K. The molecular mechanism and physiological role of cytoplasmic streaming. Curr. Opin. Plant Biol. 27, 104–110 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sauer, M. et al. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 20, 2902–2911 (2006).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Mazur, E., Benková, E. & Friml, J. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Sci. Rep. 6, 33754 (2016).

    CAS 
    PubMed Central 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mazur, E. et al. Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. Plant Sci. 293, 110414 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mazur, E., Kulik, I., Hajný, J. & Friml, J. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. New Phytol. 226, 1375–1383 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Dai, N., Wang, W., Patterson, S. E. & Bleecker, A. B. The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS One 8, e60990 (2013).

    CAS 
    PubMed Central 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hajný, J., Tan, S. & Friml, J. Auxin canalization: from speculative models toward molecular players. Curr. Opin. Plant Biol. 65, 102174 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wabnik, K. et al. Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol. Syst. Biol. 6, 447 (2010).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Hajný, J. et al. Receptor kinase module targets PIN-dependent auxin transport during canalization. Science 370, 550–557 (2020).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, K., Han, X., Xu, Z. & Xue, H. Arabidopsis GLP4 is localized to the Golgi and binds auxin in vitro. Acta Biochim. Biophys. Sin. 41, 478–487 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Klode, M., Dahlke, R. I., Sauter, M. & Steffens, B. Expression and subcellular localization of Arabidopsis thaliana auxin-binding protein 1 (ABP1). J. Plant Growth Regul. 30, 416–424 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Özkan, E. et al. An extracellular interactome of immunoglobulin and LRR proteins reveals receptor–ligand networks. Cell 154, 228–239 (2013).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wasilko, D. J. et al. The titerless infected-cells preservation and scale-up (TIPS) method for large-scale production of NO-sensitive human soluble guanylate cyclase (sGC) from insect cells infected with recombinant baculovirus. Protein Expr. Purif. 65, 122–132 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tan, S. et al. Salicylic acid targets protein phosphatase 2A to attenuate growth in plants. Curr. Biol. 30, 381–395.e8 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–353 (2011).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okumura, M. & Kinoshita, T. Measurement of ATP hydrolytic activity of plasma membrane H+-ATPase from Arabidopsis thaliana leaves. Bio-protocol 6, e2044 (2016).

  • Živanovic, B., Köhler, K., Galland, P. & Weisenseel, M. Membrane potential and endogenous ion current of Phycomyces sporangiophores. Electro. Magnetobiol. 20, 343–362 (2009).

  • Young, G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018).

    CAS 
    PubMed Central 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119–139 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Anthis, N. J. & Clore, G. M. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci. 22, 851–858 (2013).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Source link