May 19, 2024
All-optical subcycle microscopy on atomic length scales – Nature

All-optical subcycle microscopy on atomic length scales – Nature

  • Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zenhausern, F., Martin, Y. & Wickramasinghe, H. K. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science 269, 1083–1085 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, T., Kravtsov, V., Tokman, M., Belyanin, A. & Raschke, M. B. Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene. Nat. Nanotechnol. 14, 838–843 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esmann, M. et al. Vectorial near-field coupling. Nat. Nanotechnol. 14, 698–704 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, W. et al. Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, Y. et al. Fizeau drag in graphene plasmonics. Nature 594, 513–516 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sternbach, A. J. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plankl, M. et al. Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures. Nat. Photon. 15, 594–600 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Meirzadeh, E. et al. A few-layer covalent network of fullerenes. Nature 613, 71–76 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2012).

  • Leitenstorfer, A. et al. The 2023 terahertz science and technology roadmap. J. Phys. D 56, 223001 (2023).

    Article 

    Google Scholar
     

  • Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riek, C. et al. Direct sampling of electric-field vacuum fluctuations. Science 350, 420–423 (2015).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Benea-Chelmus, I.-C., Settembrini, F. F., Scalari, G. & Faist, J. Electric field correlation measurements on the electromagnetic vacuum state. Nature 568, 202–206 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron–hole plasma. Nature 414, 286–289 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wimmer, L. et al. Terahertz control of nanotip photoemission. Nat. Phys. 10, 432–436 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boolakee, T. et al. Light-field control of real and virtual charge carriers. Nature 605, 251–255 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borsch, M., Meierhofer, M., Huber, R. & Kira, M. Lightwave electronics in condensed matter. Nat. Rev. Mater. 8, 668–687 (2023).

    Article 

    Google Scholar
     

  • Sainadh, U. S. et al. Attosecond angular streaking and tunnelling time in atomic hydrogen. Nature 568, 75–77 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freudenstein, J. et al. Attosecond clocking of correlations between Bloch electrons. Nature 610, 290–295 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klarskov, P., Kim, H., Colvin, V. L. & Mittleman, D. M. Nanoscale laser terahertz emission microscopy. ACS Photon. 4, 2676–2680 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photon. 14, 693–699 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jelic, V. et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nat. Phys. 13, 591–598 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Luo, Y. et al. Nanoscale terahertz STM imaging of a metal surface. Phys. Rev. B 102, 205417 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Garg, M. et al. Real-space subfemtosecond imaging of quantum electronic coherences in molecules. Nat. Photon. 16, 196–202 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Xia, Y. & Ho, W. Atomic-scale quantum sensing based on the ultrafast coherence of an H2 molecule in an STM cavity. Science 376, 401–405 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arashida, Y. et al. Subcycle mid-infrared electric-field-driven scanning tunneling microscopy with a time resolution higher than 30 fs. ACS Photon. 9, 3156–3164 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Bionta, M. R. et al. On-chip sampling of optical fields with attosecond resolution. Nat. Photon. 15, 456–460 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schumacher, Z., Spielhofer, A., Miyahara, Y. & Grutter, P. The limit of time resolution in frequency modulation atomic force microscopy by a pump–probe approach. Appl. Phys. Lett. 110, 053111 (2017).

    Article 

    Google Scholar
     

  • Patera, L. L., Queck, F., Scheuerer, P. & Repp, J. Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators. Nature 566, 245–248 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varas, A., García-González, P., Feist, J., García-Vidal, F. J. & Rubio, A. Quantum plasmonics: from jellium models to ab initio calculations. Nanophotonics 5, 409–426 (2016).

    Article 

    Google Scholar
     

  • Takeuchi, T. & Yabana, K. Extremely large third-order nonlinear optical effects caused by electron transport in quantum plasmonic metasurfaces with subnanometer gaps. Sci. Rep. 10, 21270 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sørensen, S. G., Füchtbauer, H. G., Tuxen, A. K., Walton, A. S. & Lauritsen, J. V. Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface. ACS Nano 8, 6788–6796 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Smythe, W. R. Static and Dynamic Electricity (McGraw-Hill, 1950).

  • Jestädt, R., Ruggenthaler, M., Oliveira, M. J. T., Rubio, A. & Appel, H. Light–matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications. Adv. Phys. 68, 225–333 (2019).

    Article 

    Google Scholar
     

  • Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Peller, D. et al. Quantitative sampling of atomic-scale electromagnetic waveforms. Nat. Photon. 15, 143–147 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article 
    CAS 

    Google Scholar
     

  • VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Persson, B. N. J. & Baratoff, A. Self-consistent dynamic image potential in tunneling. Phys. Rev. B 38, 9616–9627 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Source link