May 20, 2024
An atomic boson sampler – Nature

An atomic boson sampler – Nature

  • Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. Forty-Third Annual ACM Symposium on Theory of Computing 333–342 (Association for Computing Machinery, 2011).

  • Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sansoni, L. et al. Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Bentivegna, M. et al. Experimental scattershot boson sampling. Sci. Adv. 1, e1400255 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Y.-H. et al. Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage. Phys. Rev. Lett. 131, 150601 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muraleedharan, G., Miyake, A. & Deutsch, I. H. Quantum computational supremacy in the sampling of bosonic random walkers on a one-dimensional lattice. New J. Phys. 21, 055003 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Robens, C. et al. Boson sampling with ultracold atoms. Preprint at arxiv.org/abs/2208.12253 (2022).

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Cronin, A. D., Schmiedmayer, J. & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kaufman, A. M. et al. Two-particle quantum interference in tunnel-coupled optical tweezers. Science 345, 306–309 (2014).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopes, R. et al. Atomic Hong–Ou–Mandel experiment. Nature 520, 66–68 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murmann, S. et al. Two fermions in a double well: exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett. 114, 080402 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, Z. Z. et al. Two-dimensional programmable tweezer arrays of fermions. Phys. Rev. Lett. 129, 123201 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y.-G. et al. Efficiently extracting multi-point correlations of a Floquet thermalized system. Preprint at arxiv.org/abs/2210.08556 (2022).

  • Covey, J. P., Madjarov, I. S., Cooper, A. & Endres, M. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett. 122, 173201 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufman, A. M., Lester, B. J. & Regal, C. A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2, 041014 (2012).

    CAS 

    Google Scholar
     

  • Thompson, J. D., Tiecke, T. G., Zibrov, A. S., Vuletić, V. & Lukin, M. D. Coherence and Raman sideband cooling of a single atom in an optical tweezer. Phys. Rev. Lett. 110, 133001 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norcia, M. A., Young, A. W. & Kaufman, A. M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 041054 (2018).


    Google Scholar
     

  • Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).

    CAS 

    Google Scholar
     

  • Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trisnadi, J., Zhang, M., Weiss, L. & Chin, C. Design and construction of a quantum matter synthesizer. Rev. Sci. Instrum. 93, 083203 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Young, A. W., Eckner, W. J., Schine, N., Childs, A. M. & Kaufman, A. M. Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice. Science 377, 885–889 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenkins, A., Lis, J. W., Senoo, A., McGrew, W. F. & Kaufman, A. M. Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X 12, 021027 (2022).

    CAS 

    Google Scholar
     

  • Schine, N., Young, A. W., Eckner, W. J., Martin, M. J. & Kaufman, A. M. Long-lived Bell states in an array of optical clock qubits. Nat. Phys. 18, 1067–1073 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez de Escobar, Y. N. et al. Two-photon photoassociative spectroscopy of ultracold 88Sr. Phys. Rev. A 78, 062708 (2008).

    Article 

    Google Scholar
     

  • Goban, A. et al. Emergence of multi-body interactions in a fermionic lattice clock. Nature 563, 369–373 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valiant, L. The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979).

    Article 
    MathSciNet 

    Google Scholar
     

  • Clifford, P. & Clifford, R. The classical complexity of boson sampling. In Proc. 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 146–155 (Society for Industrial and Applied Mathematics, 2018).

  • Tichy, M. C. Sampling of partially distinguishable bosons and the relation to the multidimensional permanent. Phys. Rev. A 91, 022316 (2015).

    Article 

    Google Scholar
     

  • Dufour, G., Brünner, T., Rodríguez, A. & Buchleitner, A. Many-body interference in bosonic dynamics. New J. Phys. 22, 103006 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Tichy, M. C., Mayer, K., Buchleitner, A. & Mølmer, K. Stringent and efficient assessment of boson-sampling devices. Phys. Rev. Lett. 113, 020502 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Spagnolo, N. et al. General rules for bosonic bunching in multimode interferometers. Phys. Rev. Lett. 111, 130503 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Laing, A. & O’Brien, J. L. Super-stable tomography of any linear optical device. Preprint at arxiv.org/abs/1208.2868 (2012).

  • Lund, A. P. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Patrón, R., Renema, J. J. & Shchesnovich, V. Simulating boson sampling in lossy architectures. Quantum 3, 169 (2019).

    Article 

    Google Scholar
     

  • Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dittel, C. et al. Totally destructive many-particle interference. Phys. Rev. Lett. 120, 240404 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deshpande, A., Fefferman, B., Tran, M. C., Foss-Feig, M. & Gorshkov, A. V. Dynamical phase transitions in sampling complexity. Phys. Rev. Lett. 121, 030501 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maskara, N. et al. Complexity phase diagram for interacting and long-range bosonic Hamiltonians. Phys. Rev. Lett. 129, 150604 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Childs, A. M., Gosset, D. & Webb, Z. Universal computation by multiparticle quantum walk. Science 339, 791–794 (2013).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • González-Cuadra, D. et al. Fermionic quantum processing with programmable neutral atom arrays. Proc. Natl Acad. Sci. USA 120, e2304294120 (2023).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, W. et al. Parallel assembly of arbitrary defect-free atom arrays with a multitweezer algorithm. Phys. Rev. Appl. 19, 034048 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Accelerating the assembly of defect-free atomic arrays with maximum parallelisms. Phys. Rev. Appl. 19, 054032 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Eschner, J., Morigi, G., Schmidt-Kaler, F. & Blatt, R. Laser cooling of trapped ions. J. Opt. Soc. Am. B 20, 1003–1015 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Impertro, A. et al. An unsupervised deep learning algorithm for single-site reconstruction in quantum gas microscopes. Commun. Phys. 6, 166 (2023).

    Article 

    Google Scholar
     

  • Shao, J. Mathematical Statistics (Springer, 2003).

  • Efron, B. & Tibshirani, R. An Introduction to the Bootstrap (Chapman and Hall/CRC, 1994).

  • Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Shchesnovich, V. S. Universality of generalized bunching and efficient assessment of boson sampling. Phys. Rev. Lett. 116, 123601 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seron, B., Novo, L., Arkhipov, A. & Cerf, N. J. Efficient validation of boson sampling from binned photon-number distributions. Preprint at arxiv.org/abs/2212.09643 (2022).

  • Seron, B., Novo, L. & Cerf, N. J. Boson bunching is not maximized by indistinguishable particles. Nat. Photon. 17, 702–709 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pioge, L., Seron, B., Novo, L. & Cerf, N. J. Enhanced bunching of nearly indistinguishable bosons. Preprint at arxiv.org/abs/2308.12226 (2023).

  • Shchesnovich, V. Distinguishing noisy boson sampling from classical simulations. Quantum 5, 423 (2021).

    Article 

    Google Scholar
     

  • Oszmaniec, M. & Brod, D. J. Classical simulation of photonic linear optics with lost particles. New J. Phys. 20, 092002 (2018).

    Article 

    Google Scholar
     

  • Oh, C., Noh, K., Fefferman, B. & Jiang, L. Classical simulation of lossy boson sampling using matrix product operators. Phys. Rev. A 104, 022407 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Oh, C., Jiang, L. & Fefferman, B. On classical simulation algorithms for noisy boson sampling. Preprint at arxiv.org/abs/2301.11532 (2023).

  • Owens, J. O. et al. Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011).

    Article 

    Google Scholar
     

  • Loredo, J. C. et al. Boson sampling with single-photon Fock states from a bright solid-state source. Phys. Rev. Lett. 118, 130503 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamilton, C. S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Quesada, N., Arrazola, J. M. & Killoran, N. Gaussian boson sampling using threshold detectors. Phys. Rev. A 98, 062322 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Oh, C., Liu, M., Alexeev, Y., Fefferman, B. & Jiang, L. Classical algorithm for simulating experimental Gaussian boson sampling. Preprint at arxiv.org/abs/2306.03709 (2023).

  • Young, A. W. et al. An atomic boson sampler. Zenodo https://doi.org/10.5281/zenodo.10453016 (2024).

  • Source link