May 28, 2024

An optical lattice with sound – Nature

  • 1.

    Kittel, C. Introduction to Solid State Physics (Wiley, 2004).

  • 2.

    Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Unive. Press, 1995).

  • 3.

    Tinkham, M. Introduction to Superconductivity (Dover, 2004).

  • 4.

    Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. in Advances In Atomic, Molecular, and Optical Physics Vol. 42 (eds. Bederson, B. & Walther, H.) 95–170 (Elsevier, 2000).

  • 5.

    Beekman, A. J. et al. Dual gauge field theory of quantum liquid crystals in two dimensions. Phys. Rep. 683, 1–110 (2017).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Pretko, M. & Radzihovsky, L. Fracton-elasticity duality. Phys. Rev. Lett. 120, 195301 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    González-Cuadra, D., Grzybowski, P. R., Dauphin, A. & Lewenstein, M. Strongly correlated bosons on a dynamical lattice. Phys. Rev. Lett. 121, 090402 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Stamper-Kurn, D. M. et al. Excitation of phonons in a Bose-Einstein condensate by light scattering. Phys. Rev. Lett. 83, 2876–2879 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Pethick, C. & Smith, H. Bose-Einstein Condensation in Dilute Gases (Cambridge Univ. Press, 2002).

  • 11.

    Patel, P. B. et al. Universal sound diffusion in a strongly interacting Fermi gas. Science 370, 1222–1226 (2020).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Brown, P. T. et al. Bad metallic transport in a cold atom Fermi-Hubbard system. Science 363, 379–382 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Carusotto,, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Kirton, P., Roses, M. M., Keeling, J. & Dalla Torre, E. G. Introduction to the Dicke model: from equilibrium to nonequilibrium, and vice versa. Adv. Quantum Technol. 2, 1800043 (2018).

    Article 

    Google Scholar
     

  • 15.

    Mivehvar, F., Piazza, F., Donner, T. & Ritsch, H. Cavity QED with quantum gases: new paradigms in many-body physics. Preprint at https://arxiv.org/abs/2102.04473 (2021).

  • 16.

    Klinder, J., Keßler, H., Bakhtiari, M. R., Thorwart, M. & Hemmerich, A. Observation of a superradiant Mott insulator in the Dicke-Hubbard model. Phys. Rev. Lett. 115, 230403 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Landig, R. et al. Quantum phases from competing short- and long-range interactions in an optical lattice. Nature 532, 476–479 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Kollár, A. J. et al. Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity. Nat. Commun. 8, 14386 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Kroeze, R. M., Guo, Y. & Lev, B. L. Dynamical spin-orbit coupling of a quantum gas. Phys. Rev. Lett. 123, 160404 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Gopalakrishnan, S., Lev, B. L. & Goldbart, P. M. Emergent crystallinity and frustration with Bose Einstein condensates in multimode cavities. Nat. Phys. 5, 845–850 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Gopalakrishnan, S., Lev, B. L. & Goldbart, P. M. Atom-light crystallization of Bose–Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration. Phys. Rev. A 82, 043612 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Mivehvar, F., Ostermann, S., Piazza, F. & Ritsch, H. Driven-dissipative supersolid in a ring cavity. Phys. Rev. Lett. 120, 123601 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Schuster, S., Wolf, P., Ostermann, S., Slama, S. & Zimmermann, C. Supersolid properties of a Bose-Einstein condensate in a ring resonator. Phys. Rev. Lett. 124, 143602 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Léonard, J., Morales, A., Zupancic, P., Donner, T. & Esslinger, T. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science 358, 1415–1418 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Ballantine, K. E., Lev, B. L. & Keeling, J. Meissner-like effect for a synthetic gauge field in multimode cavity QED. Phys. Rev. Lett. 118, 045302 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Rylands, C., Guo, Y., Lev, B. L., Keeling, J. & Galitski, V. Photon-mediated Peierls transition of a 1D gas in a multimode optical cavity. Phys. Rev. Lett. 125, 010404 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Vaidya, V. D. et al. Tunable-range, photon-mediated atomic interactions in multimode cavity QED. Phys. Rev. X 8, 011002 (2018).

    CAS 

    Google Scholar
     

  • 29.

    Guo, Y., Kroeze, R. M., Vaidya, V. D., Keeling, J. & Lev, B. L. Sign-changing photon-mediated atom interactions in multimode cavity quantum electrodynamics. Phys. Rev. Lett. 122, 193601 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Guo, Y. et al. Emergent and broken symmetries of atomic self-organization arising from Gouy phase shifts in multimode cavity QED. Phys. Rev. A 99, 053818 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Lewenstein, M. et al. in AIP Conference Proceedings Vol. 869 (eds Roos, C., Häffner, H. & Blatt, R.) 201–211 (AIP, 2006).

  • 32.

    Ostermann, S., Piazza, F. & Ritsch, H. Spontaneous crystallization of light and ultracold atoms. Phys. Rev. X 6, 021026 (2016).


    Google Scholar
     

  • 33.

    Dimitrova, I. et al. Observation of two-beam collective scattering phenomena in a Bose-Einstein condensate. Phys. Rev. A 96, 051603 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Siegman, A. E. Lasers (University Science Books, 1986).

  • 36.

    Mottl, R. et al. Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions. Science 336, 1570–1573 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Papageorge, A. T., Kollár, A. J. & Lev, B. L. Coupling to modes of a near-confocal optical resonator using a digital light modulator. Opt. Express 24, 11447–11457 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Devreese, J. T. & Alexandrov, A. S. Fröhlich polaron and bipolaron: recent developments. Rep. Prog. Phys. 72, 066501 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Hu, M.-G. et al. Bose polarons in the strongly interacting regime. Phys. Rev. Lett. 117, 055301 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Jørgensen, N. B. et al. Observation of attractive and repulsive polarons in a Bose-Einstein condensate. Phys. Rev. Lett. 117, 055302 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Yan, Z. Z., Ni, Y., Robens, C. & Zwierlein, M. W. Bose polarons near quantum criticality. Science 368, 190–194 (2020).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 42.

    Werman, Y., Kivelson, S. A. & Berg, E. Nonquasiparticle transport and resistivity saturation: a view from the large-N limit. npj Quant. Mater. 2, 7 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Kollár, A. J., Papageorge, A. T., Baumann, K., Armen, M. A. & Lev, B. L. An adjustable-length cavity and Bose-Einstein condensate apparatus for multimode cavity QED. New J. Phys. 17, 043012 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    Kroeze, R. M., Guo, Y., Vaidya, V. D., Keeling, J. & Lev, B. L. Spinor self-ordering of a quantum gas in a cavity. Phys. Rev. Lett. 121, 163601 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Source link