May 5, 2024
Ancient gene linkages support ctenophores as sister to other animals – Nature

Ancient gene linkages support ctenophores as sister to other animals – Nature

  • Ryan, J. F. et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342, 1242592 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halanych, K. M. The ctenophore lineage is older than sponges? That cannot be right! Or can it? J. Exp. Biol. 218, 592–597 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Jékely, G., Paps, J. & Nielsen, C. The phylogenetic position of ctenophores and the origin(s) of nervous systems. Evodevo 6, 1 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan, J. F. & Chiodin, M. Where is my mind? How sponges and placozoans may have lost neural cell types. Philos. Trans. R. Soc. Lond. B 370, 20150059 (2015).

    Article 

    Google Scholar
     

  • Moroz, L. L. et al. The ctenophore genome and the evolutionary origins of neural systems. Nature 510, 109–114 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burkhardt, P. Ctenophores and the evolutionary origin(s) of neurons. Trends Neurosci. 45, 878–880 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Philippe, H. et al. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 19, 706–712 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simion, P. et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. 27, 958–967 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunn, C. W. et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745–749 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Whelan, N. V. et al. Ctenophore relationships and their placement as the sister group to all other animals. Nat. Ecol. Evol. 1, 1737–1746 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Shen, X.-X., Evans, B., Dunn, C. W. & Rokas, A. Rooting the animal tree of life. Mol. Biol. Evol. 38, 4322–4333 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30, 282–291 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ryan, J. F. et al. The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. Evodevo 1, 9 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musser, J. M. et al. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science 374, 717–723 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harbison, G. R. in The Origins and Relationships of Lower Invertebrates Systematics Association Special Vol. 28 (eds Morris, S. C. et al.) 78–100 (Clarendon Press, 1985).

  • Tamm, S. L. Formation of the statolith in the ctenophore Mnemiopsis leidyi. Biol. Bull. 227, 7–18 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Burton, P. M. Insights from diploblasts; the evolution of mesoderm and muscle. J. Exp. Zool. B 310, 5–14 (2008).

    Article 

    Google Scholar
     

  • Sachkova, M. Y. et al. Neuropeptide repertoire and 3D anatomy of the ctenophore nervous system. Curr. Biol. 31, 5274–5285 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antcliffe, J. B., Callow, R. H. T. & Brasier, M. D. Giving the early fossil record of sponges a squeeze. Biol. Rev. Camb. Philos. Soc. 89, 972–1004 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • O’Brien, L. J. & Caron, J.-B. A new stalked filter-feeder from the middle Cambrian Burgess Shale, British Columbia, Canada. PLoS ONE 7, e29233 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mah, J. L. & Leys, S. P. Think like a sponge: the genetic signal of sensory cells in sponges. Dev. Biol. 431, 93–100 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erives, A. & Fritzsch, B. A screen for gene paralogies delineating evolutionary branching order of early metazoa. G3 10, 811–826 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, X.-X., Hittinger, C. T., Rokas, A., Minh, B. Q. & Braun, E. L. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat. Ecol. Evol. 1, 0126 (2017).

    Article 

    Google Scholar
     

  • Francis, W. R. & Canfield, D. E. Very few sites can reshape the inferred phylogenetic tree. PeerJ 8, e8865 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428–444 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renwick, J. H. The mapping of human chromosomes. Annu. Rev. Genet. 5, 81–120 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muller, H. J. in The New Systematics (ed. Huxley, J.) 185–268 (Oxford Univ. Press, 1940).

  • Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).

    Article 

    Google Scholar
     

  • Hane, J. K. et al. A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi. Genome Biol. 12, R45 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, S. On the probability of fixation of reciprocal translocations. Am. Nat. 75, 513–522 (1941).

    Article 

    Google Scholar
     

  • Lv, J., Havlak, P. & Putnam, N. H. Constraints on genes shape long-term conservation of macro-synteny in metazoan genomes. BMC Bioinform. 12, S11 (2011).

    Article 

    Google Scholar
     

  • Hillis, D. M. SINEs of the perfect character. Proc. Natl Acad. Sci. USA 96, 9979–9981 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rokas, A. & Holland, P. W. Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15, 454–459 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okada, N. SINEs: Short interspersed repeated elements of the eukaryotic genome. Trends Ecol. Evol. 6, 358–361 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martini, S., Schultz, D. T., Lundsten, L. & Haddock, S. H. D. Bioluminescence in an undescribed species of carnivorous sponge (Cladorhizidae) from the deep sea. Front. Mar. Sci. 7, 576476 (2020).

    Article 

    Google Scholar
     

  • Kenny, N. J. et al. Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri. Nat. Commun. 11, 3676 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuster, A. et al. Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth-death clock model. BMC Evol. Biol. 18, 114 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna, V. et al. The Aquatic Symbiosis Genomics Project: probing the evolution of symbiosis across the tree of life. Wellcome Open Res. 6, 254 (2021).

    Article 

    Google Scholar
     

  • Schultz, D. T. et al. A chromosome-scale genome assembly and karyotype of the ctenophore Hormiphora californensis. G3 11, jkab302 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, S. B. et al. Speciation of pelagic zooplankton: invisible boundaries can drive isolation of oceanic ctenophores. Front. Genet. 13, 970314 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fairclough, S. R. et al. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol. 14, R15 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suga, H. et al. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat. Commun. 4, 2325 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • de Mendoza, A., Suga, H., Permanyer, J., Irimia, M. & Ruiz-Trillo, I. Complex transcriptional regulation and independent evolution of fungal-like traits in a relative of animals. eLife 4, e08904 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kenny, N. J. et al. The gene-rich genome of the scallop Pecten maximus. Gigascience 9, giaa037 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Chromosome-level reference genome of the jellyfish Rhopilema esculentum. Gigascience 9, giaa036 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lang, B. F., O’Kelly, C., Nerad, T., Gray, M. W. & Burger, G. The closest unicellular relatives of animals. Curr. Biol. 12, 1773–1778 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torruella, G. et al. Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Mol. Biol. Evol. 29, 531–544 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubert, I. & Lysak, M. A. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 27, 207–216 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyman, L. H. The phylogeny of the lower metazoa. Q. Rev. Biol. 51, 344–347 (1976).

    Article 

    Google Scholar
     

  • Collins, A. G. Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. Proc. Natl Acad. Sci. USA 95, 15458–15463 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laumer, C. E. et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. Biol. Sci. 286, 20190831 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schierwater, B. My favorite animal, Trichoplax adhaerens. Bioessays 27, 1294–1302 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simakov, O. et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 4, 820–830 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández, R. & Gabaldón, T. Gene gain and loss across the metazoan tree of life. Nat. Ecol. Evol. 4, 524–533 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moroz, L. L. Multiple origins of neurons from secretory cells. Front. Cell Dev. Biol. 9, 669087 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belahbib, H. et al. New genomic data and analyses challenge the traditional vision of animal epithelium evolution. BMC Genom. 19, 393 (2018).

    Article 

    Google Scholar
     

  • Albalat, R. & Cañestro, C. Evolution by gene loss. Nat. Rev. Genet. 17, 379–391 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parker, G. H. The Elementary Nervous System (J.B. Lippincott Company, 1919).

  • Leys, S. P. Elements of a ‘nervous system’ in sponges. J. Exp. Biol. 218, 581–591 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Adams, M. et al. One fly-one genome: chromosome-scale genome assembly of a single outbred Drosophila melanogaster. Nucleic Acids Res. 48, e75 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C.-S. Scaffolding of long read assemblies using long range contact information. BMC Genom. 18, 527 (2017).

    Article 

    Google Scholar
     

  • Kerpedjiev, P. et al. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 19, 125 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudchenko, O. et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. Preprint at bioRxiv https://doi.org/10.1101/254797 (2018).

  • Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denbo, S. et al. Revision of the Capsaspora genome using read mating information adjusts the view on premetazoan genome. Dev. Growth Differ. 61, 34–42 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • Open2C et al. Pairtools: from sequencing data to chromosome contacts. Preprint at bioRxiv https://doi.org/10.1101/2023.02.13.528389 (2023).

  • Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36, 311–316 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, M. et al. TGS-GapCloser: a fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 9, giaa094 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinform. 19, 460 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laetsch, D. R. & Blaxter, M. L. BlobTools: interrogation of genome assemblies. F1000Res. 6, 1287 (2017).

    Article 

    Google Scholar
     

  • Cabanettes, F. & Klopp, C. D-GENIES: dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

  • Gertz, E. M., Yu, Y.-K., Agarwala, R., Schäffer, A. A. & Altschul, S. F. Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol. 4, 41 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santini, S. et al. The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. Preprint at bioRxiv https://doi.org/10.1101/2022.07.26.501511 (2022).

  • Whelan, N. V., Kocot, K. M., Moroz, L. L. & Halanych, K. M. Error, signal, and the placement of Ctenophora sister to all other animals. Proc. Natl Acad. Sci. USA 112, 5773–5778 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Protein-to-genome alignment with miniprot. Bioinformatics 39, btad014 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoff, K. J., Lomsadze, A., Borodovsky, M. & Stanke, M. Whole-genome annotation with BRAKER. Methods Mol. Biol. 1962, 65–95 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brůna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom. Bioinform. 2, lqaa026 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francis, W. R., Shaner, N. C., Christianson, L. M., Powers, M. L. & Haddock, S. H. D. Occurrence of isopenicillin-N-synthase homologs in bioluminescent ctenophores and implications for coelenterazine biosynthesis. PLoS ONE 10, e0128742 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Townsend, J. P. et al. A mesopelagic ctenophore representing a new family, with notes on family-level taxonomy in Ctenophora: Vampyroctena delmarvensis gen. nov. sp. nov. (Vampyroctenidae, fam. nov.). Mar. Biodivers. 50, 34 (2020).

  • Babonis, L. S. et al. Integrating embryonic development and evolutionary history to characterize tentacle-specific cell types in a ctenophore. Mol. Biol. Evol. 35, 2940–2956 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Darwin Tree of Life Project. Sequence locally, think globally: The Darwin Tree of Life Project. Proc. Natl Acad. Sci. USA 119, e2115642118 (2022).

    Article 

    Google Scholar
     

  • Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srivastava, M. et al. The Trichoplax genome and the nature of placozoans. Nature 454, 955–960 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann, B. et al. Sea anemone genomes reveal ancestral metazoan chromosomal macrosynteny. Preprint at bioRxiv https://doi.org/10.1101/2020.10.30.359448 (2020).

  • Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Source link