April 26, 2024
Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy – Nature

Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy – Nature

  • Long, G. V. et al. Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials. Lancet Oncol. 17, 1743–1754 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robert, C. et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. New Engl. J. Med. 381, 626–636 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Long, G. V. et al. Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB-C, BRAFV600 mutation-positive melanoma (NeoCombi): a single-arm, open-label, single-centre, phase 2 trial. Lancet Oncol. 20, 961–971 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leung, J. K. & Sadar, M. D. Non-genomic actions of the androgen receptor in prostate cancer. Front. Endocrinol. 8, 2 (2017).

    Article 

    Google Scholar
     

  • Pinto, J. A. et al. Gender and outcomes in non-small cell lung cancer: an old prognostic variable comes back for targeted therapy and immunotherapy? ESMO Open 3, e000344 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Capone, I., Marchetti, P., Ascierto, P. A., Malorni, W. & Gabriele, L. Sexual dimorphism of immune responses: a new perspective in cancer immunotherapy. Front. Immunol. 9, 552 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Clocchiatti, A. et al. Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation. J. Clin. Invest. 128, 5531–5548 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pequeux, C. et al. Stromal estrogen receptor-alpha promotes tumor growth by normalizing an increased angiogenesis. Cancer Res. 72, 3010–3019 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao, L. et al. Pharmacological activation of estrogen receptor beta augments innate immunity to suppress cancer metastasis. Proc. Natl Acad. Sci. USA 115, E3673–E3681 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothenberger, N. J., Somasundaram, A. & Stabile, L. P. The role of the estrogen pathway in the tumor microenvironment. Int. J. Mol. Sci. 19, 611 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ribeiro, M. P. C., Santos, A. E. & Custodio, J. B. A. The activation of the G protein-coupled estrogen receptor (GPER) inhibits the proliferation of mouse melanoma K1735-M2 cells. Chem. Biol. Interact. 277, 176–184 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qi, J. Therapy resistance by splicing: can the androgen receptor teach us about BRAF? Pigm. Cell Melanoma Res. 25, 293–294 (2012).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Androgen receptor promotes melanoma metastasis via altering the miRNA-539-3p/USP13/MITF/AXL signals. Oncogene 36, 1644–1654 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Natale, C. A. et al. Activation of G protein-coupled estrogen receptor signaling inhibits melanoma and improves response to immune checkpoint blockade. eLife 7, e31770 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smalley, K. S. Why do women with melanoma do better than men? eLife 7, e33511 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marzagalli, M. et al. Estrogen receptor beta in melanoma: from molecular insights to potential clinical utility. Front. Endocrinol. 7, 140 (2016).

    Article 

    Google Scholar
     

  • Amaria, R. N. et al. Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial. Lancet Oncol. 19, 181–193 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stacchiotti, S. et al. High-grade soft-tissue sarcomas: tumor response assessment-pilot study to assess the correlation between radiologic and pathologic response by using RECIST and Choi criteria. Radiology 251, 447–456 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Eisenhauer, E. A. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2008).

    Article 

    Google Scholar
     

  • Mendiratta, P. et al. Genomic strategy for targeting therapy in castration-resistant prostate cancer. J. Clin. Oncol. 27, 2022–2029 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schmidt, K. et al. The lncRNA SLNCR recruits the androgen receptor to EGR1-bound genes in melanoma and inhibits expression of tumor suppressor p21. Cell Rep 27, 2493–2507 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma, M. et al. Sustained androgen receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. J. Exp. Med. 218, e20201137 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou, Z. X., Lane, M. V., Kemppainen, J. A., French, F. S. & Wilson, E. M. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol. Endocrinol. 9, 208–218 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Jin, H. J., Kim, J. & Yu, J. Androgen receptor genomic regulation. Transl. Androl. Urol. 2, 157–177 (2013).

    PubMed 

    Google Scholar
     

  • Morvillo, V. et al. Atypical androgen receptor in the human melanoma cell line IIB-MEL-J. Pigm. Cell Res. 8, 135–141 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Aguirre-Portoles, C. et al. ZIP9 Is a druggable determinant of sex differences in melanoma. Cancer Res. 81, 5991–6003 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liang, C. et al. TRIM36, a novel androgen-responsive gene, enhances anti-androgen efficacy against prostate cancer by inhibiting MAPK/ERK signaling pathways. Cell Death Dis. 9, 155 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer. Cancer Res. 79, 2580–2592 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, M. et al. Targeting AR-Beclin 1 complex-modulated growth factor signaling increases the antiandrogen enzalutamide sensitivity to better suppress the castration-resistant prostate cancer growth. Cancer Lett. 442, 483–490 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu, H. et al. Combination of sorafenib and enzalutamide as a potential new approach for the treatment of castration-resistant prostate cancer. Cancer Lett. 385, 108–116 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuser-Abali, G., Alptekin, A., Lewis, M., Garraway, I. P. & Cinar, B. YAP1 and AR interactions contribute to the switch from androgen-dependent to castration-resistant growth in prostate cancer. Nat. Commun. 6, 8126 (2015).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin, L. et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250–256 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rubin, J. B. et al. Sex differences in cancer mechanisms. Biol. Sex Differ. 11, 17 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boese, A. C., Kim, S. C., Yin, K. J., Lee, J. P. & Hamblin, M. H. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am. J. Physiol. Heart. Circ. Physiol. 313, H524–H545 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature https://doi.org/10.1038/s41586-022-04522-6 (2022).

  • Balzano, S. et al. The effect of androgen blockade on pulsatile gonadotrophin release and LH response to naloxone. Clin. Endocrinol. 27, 491–499 (1987).

    CAS 
    Article 

    Google Scholar
     

  • Kerrigan, J. R., Veldhuis, J. D. & Rogol, A. D. Androgen-receptor blockade enhances pulsatile luteinizing hormone production in late pubertal males: evidence for a hypothalamic site of physiologic androgen feedback action. Pediatr. Res. 35, 102–106 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maughan, B. L. & Antonarakis, E. S. Enzalutamide in chemo-naive castration-resistant prostate cancer: effective for most but not for all. Asian J. Androl. 16, 807–808 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dehm, S. M., Schmidt, L. J., Heemers, H. V., Vessella, R. L. & Tindall, D. J. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 68, 5469–5477 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arora, V. K. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cross, T. L., Kasahara, K. & Rey, F. E. Sexual dimorphism of cardiometabolic dysfunction: gut microbiome in the play? Mol. Metab. 15, 70–81 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martin, A. M., Sun, E. W., Rogers, G. B. & Keating, D. J. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front. Physiol. 10, 428 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sudo, N. Microbiome, HPA axis and production of endocrine hormones in the gut. Adv. Exp. Med. Biol. 817, 177–194 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gaballa, R. et al. Exosomes-mediated transfer of Itga2 promotes migration and invasion of prostate cancer cells by inducing epithelial-mesenchymal transition. Cancers 12, 2300 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ricke, E. A. et al. Androgen hormone action in prostatic carcinogenesis: stromal androgen receptors mediate prostate cancer progression, malignant transformation and metastasis. Carcinogenesis 33, 1391–1398 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scatena, C. et al. Androgen receptor expression inversely correlates with histological grade and N stage in ER+/PgRlow male breast cancer. Breast Cancer Res. Treat. 182, 55–65 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, D. & Tindall, D. J. Androgen action during prostate carcinogenesis. Methods Mol. Biol. 776, 25–44 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xia, N., Cui, J., Zhu, M., Xing, R. & Lu, Y. Androgen receptor variant 12 promotes migration and invasion by regulating MYLK in gastric cancer. J. Pathol. 248, 304–315 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • McQuade, J. L. et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol. 19, 310–322 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robert, C. et al. Five-year outcomes from a phase 3 METRIC study in patients with BRAF V600 E/K-mutant advanced or metastatic melanoma. Eur. J. Cancer 109, 61–69 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andrews, S. FastQC: a quality control tool for high throughput sequence data. Version 0.11.9. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • DeLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 1530–1532 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

  • Efstathiou, E. et al. Enzalutamide in combination with abiraterone acetate in bone metastatic castration-resistant prostate cancer patients. Eur. Urol. Oncol. 3, 119–127 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Maity, S. N. et al. Targeting of CYP17A1 lyase by VT-464 inhibits adrenal and intratumoral androgen biosynthesis and tumor growth of castration resistant prostate cancer. Sci. Rep. 6, 35354 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link