May 4, 2024
Antarctic calving loss rivals ice-shelf thinning – Nature

Antarctic calving loss rivals ice-shelf thinning – Nature

  • Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,Ch.9 (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).

  • Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. Nat. Clim. Change 8, 53–57 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Borstad, C. P. et al. A damage mechanics assessment of the Larsen B ice shelf prior to collapse: toward a physically-based calving law. Geophys. Res. Lett. 39, L18502 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Scambos, T. A. et al. Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett. 280, 51–60 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Nowicki, S. et al. Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere 14, 2331–2368 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Change 8, 1053–1061 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere 14, 3033–3070 (2020).

    ADS 
    Article 

    Google Scholar
     

  • DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–64 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bassis, J. N., Berg, B., Crawford, A. J. & Benn, D. I. Transition to marine ice cliff instability controlled by ice thickness gradients and velocity. Science 372, 1342–1344 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crawford, A. J. et al. Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. Nat. Commun. 12, 2701 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Clerc, F., Minchew, B. M. & Behn, M. D. Marine ice cliff instability mitigated by slow removal of ice shelves. Geophys. Res. Lett. 46.21, 12108–12116 (2019).

    Article 

    Google Scholar
     

  • Cape, M. R., Vernet, M., Kahru, M. & Spreen, G. Polynya dynamics drive primary production in the Larsen A and B embayments following ice shelf collapse. J. Geophys. Res. Oceans 119, 572–594 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Campagne, P. et al. Glacial ice and atmospheric forcing on the Mertz Glacier Polynya over the past 250 years. Nat. Commun. 6, 6642 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil. Trans. R. Soc. B 362, 149–166 (2007).

  • Grosfeld, K., Schröder, M., Fahrbach, E., Gerdes, R. & Mackensen, A. How iceberg calving and grounding change the circulation and hydrography in the Filchner Ice Shelf–Ocean System. J. Geophys. Res. Oceans 106, 9039–9055 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Silva, T. A. M., Bigg, G. R. & Nicholls, K. W. Contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans 111, C03004 (2006).

  • Stern, A. A., Adcroft, A. & Sergienko, O. The effects of Antarctic iceberg calving‐size distribution in a global climate model. J. Geophys. Res. Oceans 121, 5773–5788 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Yoon, S.-T. et al. Ice front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelf. Nat. Commun. 13, 306 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gutt, J. et al. Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep Sea Res. II 58, 74–83 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried., M. R. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mohajerani, Y., Wood, M., Velicogna, I. & Rignot, E. Detection of glacier calving margins with convolutional neural networks: a case study. Remote Sensing 2019, 74 (2019).

  • Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes. Sci. Adv. 2, e1501350 (2016).

  • Greene, C. A., Young, D. A., Gwyther, D. E., Galton-Fenzi, B. K. & Blankenship, D. D. Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing. Cryosphere 12, 2869–2882 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Baumhoer, C. A., Dietz, A. J., Kneisel, C., Paeth, H. & Kuenzer, C. Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades. Cryosphere 15, 2357–2381 (2021).

  • Scambos, T. et al. Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift. J. Glaciol. 54, 579–591 (2008).

  • Lazzara, M. A., Jezek, K. C., Scambos, T. A., MacAyeal, D. R. & Van der Veen, C. J. On the recent calving of icebergs from the Ross Ice Shelf. Polar Geogr. 23, 201–212 (1999).

  • MacAyeal, D. R. et al. Tabular iceberg collisions within the coastal regime. J. Glaciol. 54, 371–386 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

  • Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proc. Natl Acad. Sci. USA 112, 3263–3268 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Qi, M. et al. A 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observations. Earth Syst. Sci. Data 13, 4583–4601 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Ferrigno, J. G. & Gould, W. G. Substantial changes in the coastline of Antarctica revealed by satellite imagery. Polar Rec. 23, 577–583 (1987).

  • Paolo, F., Gardner, A. S., Greene, C. A. & Schlegel, N. J. MEaSUREs ITS_LIVE Antarctic Ice Shelf Height Change and Basal Melt Rates, Version 1 (2022); NASA https://doi.org/10.5067/SE3XH9RXQWAM

  • Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. Earth Surf. 117, F01022 (2012).

  • Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol. 66, 891–904 (2020).

  • De Rydt, J., Reese, R., Paolo, F. S. & Gudmundsson, G. H. Drivers of Pine Island Glacier speed-up between 1996 and 2016. Cryosphere 15, 113–132 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Joughin, I., Shapero, D., Smith, B., Dutrieux, P. & Barham, M. Ice-shelf retreat drives recent Pine Island Glacier speedup. Sci. Adv. 7, eabg3080 (2021).

  • Schlegel, N.-J. et al. Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework. Cryosphere 12, 3511–3534 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Robel, A. A. & Banwell, A. F. A speed limit on ice shelf collapse through hydrofracture. Geophys. Res. Lett. 46, 12092–12100 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Goldberg, D. N., Heimbach, P., Joughin, I. & Smith, B. Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration. Cryosphere 9, 2429–2446 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Lilien, D. A., Joughin, I., Smith, B. & Gourmelen, N. Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers. Cryosphere 13, 2817–2834 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Pattyn, F., Huyghe, A., De Brabander, S. & De Smedt, B. Role of transition zones in marine ice sheet dynamics. J. Geophys. Res. Earth Surf. 111, eabg3080 (2006).

  • Edwards, T. L. et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 593, 74–82 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Massom, R. A. et al. External influences on the Mertz Glacier Tongue East Antarctica in the decade leading up to its calving in 2010. J. Geophys. Res. Earth Surf. 120, 490–506 (2015).

  • Fricker, H. A., Young, N. W., Allison, I. & Coleman, R. Iceberg calving from the Amery ice shelf, East Antarctica. Ann. Glaciol. 34, 241–246 (2002).

  • Walker, C. C., Becker, M. K. & Fricker, H. A. A high resolution, three‐dimensional view of the D‐28 calving event from Amery Ice Shelf with ICESat‐2 and satellite imagery. Geophys. Res. Lett. 483, e2020GL091200 (2021).

    ADS 

    Google Scholar
     

  • Gardner, A. S., Fahnestock, M. A. & Scambos, T. A. ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities (National Snow and Ice Data Center, 2019); https://doi.org/10.5067/6II6VW8LLWJ7

  • Rignot, E., Mouginot, J. & Scheuchl, B. MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017); https://doi.org/10.5067/D7GK8F5J8M8R

  • Morlighem, M. MEaSUREs BedMachine Antarctica, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2020); https://doi.org/10.5067/E1QL9HFQ7A8M

  • Howat, I. M., Porter, C., Smith, B. E., Noh, M. J. & Morin, P. The reference elevation model of Antarctica. Cryosphere 13, 665–674 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

  • Bamber, J., Gomez-Dans, J. L. & Griggs, J. A. Antarctic 1 km Digital Elevation Model (DEM) from Combined ERS-1 Radar and ICESat Laser Satellite Altimetry, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2009); https://doi.org/10.5067/H0FQ1KL9NEKM

  • Liu, H., Jezek, K. C., Li, B. & Zhao, Z. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2015); https://doi.org/10.5067/8JKNEW6BFRVD

  • Mouginot, J., Scheuchl, B. & Rignot, E. MEaSUREs Antarctic Boundaries for IPY 2007–2009 from Satellite Radar, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017; https://doi.org/10.5067/AXE4121732AD

  • Liu, H. & Jezek, K. A complete high-resolution coastline of Antarctica extracted from orthorectified radarsat SAR imagery. Photogramm. Eng. Remote Sensing 70, 605–616 (2004).

  • Haran, T., Bohlander, J., Scambos, T., Painter, T. & Fahnestock, M. MODIS Mosaic of Antarctica Image Map, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2019); https://doi.org/10.5067/68TBT0CGJSOJ

  • Fraser, A. D. et al. High-resolution mapping of circum-Antarctic landfast sea ice distribution, 2000–2018. Earth Syst. Sci. Data 12, 2987–2999 (2020).

  • Walker, C. C. et al. Iceberg, right ahead!: The surprising and ongoing collapse of an East Antarctic ice shelf in response to changes in the ocean environment. In AGU Fall Meeting Abstracts abstr. C13A-06 (AGU, 2019).

  • MacGregor, J. A., Catania, G. A., Markowski, M. S. & Andrews., A. G. Widespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011. J. Glaciol. 58, 458–466 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Miles, B. W. J. et al. Intermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018. J. Glaciol. 66, 485–495 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Lhermitte, S. et al. Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. Proc. Natl Acad. Sci. USA 117, 24735–24741 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taylor, J. Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements 2nd edn (University Science Books, 1997).

  • Morlighem, M. E. et al. Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 37, L14502 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Seroussi, H. et al. Dependence of Greenland Ice Sheet projections on its thermal regime. J. Glaciol. 59, 1024–1034 (2013).

  • Blatter, H. Velocity and stress-fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol. 41, 333–344 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Pattyn, F. A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res. 108, 2382 (2003).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • MacAyeal, D. R. Large-scale ice flow over a viscous basal sediment. Theory and application to Ice Stream B, Antarctica. J. Geophys. Res. 94, 4071–4087 (1989).

    ADS 
    Article 

    Google Scholar
     

  • Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).

  • Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci. 104, 151–157 (2017).

  • Greene, C. A. et al. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).

  • Source link