September 12, 2024
Anticyclonic eddies aggregate pelagic predators in a subtropical gyre – Nature

Anticyclonic eddies aggregate pelagic predators in a subtropical gyre – Nature

  • Chaigneau, A., Gizolme, A. & Grados, C. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 79, 106–119 (2008).

    ADS 
    Article 

    Google Scholar
     

  • McGillicuddy, D. J. Jr et al. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394, 263–266 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dufois, F. et al. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Sci. Adv. 2, 1–7 (2016).

    Article 

    Google Scholar
     

  • Godø, O. R. et al. Mesoscale eddies are oases for higher trophic marine life. PLoS ONE 7, e30161 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J. & Samelson, R. M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334, 328–333 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles 18, GB3003 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Bell, J. D. et al. Diversifying the use of tuna to improve food security and public health in Pacific Island countries and territories. Mar. Policy 51, 584–591 (2015).

    Article 

    Google Scholar
     

  • Della Penna, A. & Gaube, P. Mesoscale eddies structure mesopelagic communities. Front. Mar. Sci. 7, 454 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Braun, C. D. et al. The functional and ecological significance of deep diving by large marine predators. Ann. Rev. Mar. Sci. 14, 129–159 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • McGillicuddy, D. J. Jr Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Ann. Rev. Mar. Sci. 8, 125–159 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Fennell, S. & Rose, G. Oceanographic influences on deep scattering layers across the North Atlantic. Deep-Sea Res. Part I Oceanogr. Res. Pap. 105, 132–141 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Duffy, L. M. et al. Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales. Deep-Sea Res. Part II Topical Stud. Oceanogr. 140, 55–73 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. Proc. Natl Acad. Sci. USA 116, 17187–17192 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Doyle, T. K. et al. Leatherback turtles satellite-tagged in European waters. Endanger. Species Res. 4, 23–31 (2008).

    Article 

    Google Scholar
     

  • Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lynham, J., Nikolaev, A., Raynor, J., Vilela, T. & Villaseñor-Derbez, J. C. Impact of two of the world’s largest protected areas on longline fishery catch rates. Nat. Commun. 11, 979 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Polovina, J. J., Abecassis, M., Howell, E. A. & Woodworth, P. Increases in the relative abundance of mid-trophic level fishes concurrent with declines in apex predators in the subtropical North Pacific, 1996-2006. Fish. Bull. 107, 523–531 (2009).


    Google Scholar
     

  • Royer, T. C. Ocean eddies generated by seamounts in the North Pacific. Science 199, 1063–1064 (1978).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Res. Part I Oceanogr. Res. Pap. 68, 54–67 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Bernstein, R. L. & White, W. B. Time and length scales of baroclinic eddies in the central North Pacific Ocean. J. Phys. Oceanogr. 4, 613–624 (1974).

    ADS 
    Article 

    Google Scholar
     

  • Maunder, M. N. & Punt, A. E. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70, 141–159 (2004).

    Article 

    Google Scholar
     

  • Woodworth, P. A. et al. Eddies as offshore foraging grounds for melon-headed whales (Peponocephala electra). Mar. Mammal Sci. 28, 638–647 (2012).

    Article 

    Google Scholar
     

  • Gaube, P. et al. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PLoS ONE 12, e0172839 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chambault, P. et al. Swirling in the ocean: immature loggerhead turtles seasonally target old anticyclonic eddies at the fringe of the North Atlantic Gyre. Prog. Oceanogr. 175, 345–358 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Gaube, P., McGillicuddy Jr, D., Chelton, D., Behrenfeld, M. & Strutton, P. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans 119, 8195–8220 (2014).

  • Waga, H., Kirawake, T. & Ueno, H. Impacts of mesoscale eddies on phytoplankton size structure. Geophys. Res. Lett. 46, 13191–13198 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Chen, Y.-lL. et al. Biologically active warm-core anticyclonic eddies in the marginal seas of the western Pacific Ocean. Deep Sea Res. Part I 106, 68–84 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Harke, M. J. et al. Microbial community transcriptional patterns vary in response to mesoscale forcing in the North Pacific Subtropical Gyre. Environ. Microbiol. 23, 4807–4822 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hawco, N. J. et al. Iron depletion in the deep chlorophyll maximum: mesoscale eddies as natural iron fertilization experiments. Global Biogeochem. Cycles 35, e2021GB007112 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Madigan, D. J. et al. Water column structure defines vertical habitat of twelve pelagic predators in the South Atlantic. ICES J. Mar. Sci. 78, 867–883 (2021).

    Article 

    Google Scholar
     

  • Arostegui, M., Gaube, P. & Braun, C. Movement ecology and stenothermy of satellite-tagged shortbill spearfish (Tetrapturus angustirostris). Fish. Res. 215, 21–26 (2019).

    Article 

    Google Scholar
     

  • Lehodey, P., Senina, I. & Murtugudde, R. A spatial ecosystem and populations dynamics model (SEAPODYM)—modeling of tuna and tuna-like populations. Prog. Oceanogr. 78, 304–318 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Varghese, S. P., Somvanshi, V. S. & Dalvi, R. S. Diet composition, feeding niche partitioning and trophic organisation of large pelagic predatory fishes in the eastern Arabian Sea. Hydrobiologia 736, 99–114 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Ward, P. & Myers, R. A. Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear. Can. J. Fish. Aquat.Sci. 62, 1130–1142 (2005).

    Article 

    Google Scholar
     

  • Kai, E. T. et al. Top marine predators track Lagrangian coherent structures. Proc. Natl Acad. Sci. USA 106, 8245–8250 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lima, I. D., Olson, D. B. & Doney, S. C. Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: biological production and community structure. J. Geophys. Res. Oceans 107, 25-1–25-21 (2002).

    Article 

    Google Scholar
     

  • Spall, S. A. & Richards, K. J. A numerical model of mesoscale frontal instabilities and plankton dynamics—I. model formulation and initial experiments. Deep-Sea Res. Part I Oceanogr. Res. Pap. 47, 1261–1301 (2000).

    ADS 
    Article 

    Google Scholar
     

  • Siegelman, L., O’Toole, M., Flexas, M., Rivière, P. & Klein, P. Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci. Rep. 9, 5588 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lévy, M., Ferrari, R., Franks, P. J., Martin, A. P. & Rivière, P. Bringing physics to life at the submesoscale. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052756 (2012).

    Article 

    Google Scholar
     

  • Guidi, L. et al. Does eddy-eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre? J. Geophys. Res. Biogeosciences https://doi.org/10.1029/2012JG001984 (2012).

    Article 

    Google Scholar
     

  • Chow, C. H., Cheah, W., Tai, J. H. & Liu, S. F. Anomalous wind triggered the largest phytoplankton bloom in the oligotrophic North Pacific Subtropical Gyre. Sci. Rep. 9, 15550 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guo, M., Xiu, P., Chai, F. & Xue, H. Mesoscale and submesoscale contributions to high sea surface chlorophyll in subtropical gyres. Geophys. Res. Lett. 46, 13217–13226 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Klein, P. et al. Ocean-scale interactions from space. Earth Space Sci. 6, 795–817 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Martin, A. et al. The oceans’ twilight zone must be studied now, before it is too late. Nature 580, 26–28 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • St. John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Marine Sci. 3, 31 (2016).


    Google Scholar
     

  • Bigelow, K., Musyl, M. K., Poisson, F. & Kleiber, P. Pelagic longline gear depth and shoaling. Fish. Res. 77, 173–183 (2006).

    Article 

    Google Scholar
     

  • Brodziak, J. & Walsh, W. A. Model selection and multimodel inference for standardizing catch rates of bycatch species: a case study of oceanic whitetip shark in the Hawaii-based longline fishery. Can. J. Fish. Aquat.Sci. 70, 1723–1740 (2013).

    Article 

    Google Scholar
     

  • Woodworth-Jefcoats, P. A., Polovina, J. & Drazen, J. Synergy among oceanographic variability, fishery expansion, and longline catch composition in the central North Pacific Ocean. Fish. Bull. 116, 228–239 (2018).

    Article 

    Google Scholar
     

  • Boggs, C. H. Depth, capture time, and hooked longevity of longline-caught pelagic fish: timing bites of fish with chips. Fish. Bull. 90, 642–658 (1992).


    Google Scholar
     

  • Walsh, W. A. & Brodziak, J. Applications of Hawaii longline fishery observer and logbook data for stock assessment and fishery research. NOAA Tech. Memo. 57, 62 (2016).


    Google Scholar
     

  • Walsh, W. A. & Brodziak, J. Billfish CPUE standardization in the Hawaii longline fishery: model selection and multimodel inference. Fish. Res. 166, 151–162 (2015).

    Article 

    Google Scholar
     

  • Gilman, E., Chaloupka, M., Fitchett, M., Cantrell, D. L. & Merrifield, M. Ecological responses to blue water MPAs. PLoS ONE 15, e0235129 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Portner, E. J., Polovina, J. J. & Choy, C. A. Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox). Deep-Sea Research Part I 125, 40–51 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar
     

  • Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0 http://florianhartig.github.io/DHARMa/ (2020).

  • Jackson, C. H. Multi-state models for panel data: the msm package for R. J. Stat. Softw. https://doi.org/10.18637/jss.v038.i08 (2011).

    Article 

    Google Scholar
     

  • Bates, D. et al. lme4: Linear mixed-effects models using ’Eigen’ and S4. R package version 1.1-25 https://github.com/lme4/lme4/ (2020).

  • Lenth, R. et al. emmeans: Estimated marginal means, aka least-squares mean. R package version 1.7.2 https://github.com/rvlenth/emmeans (2022).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); http://www.r-project.org/

  • Source link