May 19, 2024
Atomic imaging of zeolite-confined single molecules by electron microscopy – Nature

Atomic imaging of zeolite-confined single molecules by electron microscopy – Nature

  • Temirov, R., Soubatch, S., Luican, A. & Tautz, F. S. Free-electron-like dispersion in an organic monolayer film on a metal substrate. Nature 444, 350–353 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gross, L. et al. Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2, 821–825 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Weiss, C., Wagner, C., Temirov, R. & Tautz, F. S. Direct imaging of intermolecular bonds in scanning tunneling microscopy. J. Am. Chem. Soc. 132, 11864–11865 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, J. et al. Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Koshino, M. et al. Imaging of single organic molecules in motion. Science 316, 853 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, Z., Yanagi, K., Suenaga, K., Kataura, H. & Iijima, S. Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nat. Nanotechnol. 2, 422–425 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 359, 675–679 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Li, Y. et al. Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks. Matter 1, 428–438 (2019).

    Article 

    Google Scholar
     

  • Shen, B., Chen, X., Shen, K., Xiong, H. & Wei, F. Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. Nat. Commun. 11, 2692 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shen, B. et al. Atomic spatial and temporal imaging of local structures and light elements inside zeolite frameworks. Adv. Mater. 32, 1906103 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yuan, W. et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 367, 428–430 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shen, B. et al. A single-molecule van der Waals compass. Nature 592, 541–544 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Li, Y. & Yu, J. New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem. Rev. 114, 7268–7316 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 95, 559–614 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Busca, G. Acid catalysts in industrial hydrocarbon chemistry. Chem. Rev. 107, 5366–5410 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Yilmaz, B. & Müller, U. Catalytic applications of zeolites in chemical industry. Top. Catal. 52, 888–895 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Rinaldi, R. & Schuth, F. Design of solid catalysts for the conversion of biomass. Energy Environ. Sci. 2, 610–626 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Olsbye, U. et al. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chem. Soc. Rev. 44, 7155–7176 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Kokotailo, G. T., Lawton, S. L., Olson, D. H., Olson, D. H. & Meier, W. M. Structure of synthetic zeolite ZSM-5. Nature 272, 437–438 (1978).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lazic, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Lazić, I. & Bosch, E. G. T. Analytical review of direct STEM imaging techniques for thin samples. Adv. Imaging Electron Phys. 199, 75–184 (2017).

    Article 

    Google Scholar
     

  • Yucelen, E., Lazic, I. & Bosch, E. G. T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 8, 2676 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Borade, R. B., Adnot, A. & Kaliaguine, S. Acid sites in dehydroxylated Y zeolites: an X-ray photoelectron and infrared spectroscopic study using pyridine as a probe molecule. J. Chem. Soc. Faraday Trans. 86, 3949–3956 (1990).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, W., Cu, S., Han, X. & Bao, X. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem. Soc. Rev. 41, 192–210 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Paul, G. et al. Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chem. Soc. Rev. 47, 5684–5739 (2019).

    Article 

    Google Scholar
     

  • Boronat, B. & Corma, A. What is measured when measuring acidity in zeolites with probe molecules? ACS Catal. 9, 1539–1548 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Liu, L. et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59, 819–825 (2019).

    Article 

    Google Scholar
     

  • Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer, 2010).

  • Lazić, I. & Bosch, E. G. T. Analytical review of direct STEM imaging techniques for thin samples. Adv. Imaging Electron Phys. 199, 75–184 (2017).

    Article 

    Google Scholar
     

  • Bosch, E. G. T. & Lazić, I. Analysis of HR-STEM theory for thin specimen. Ultramicroscopy 156, 59–72 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Bosch, E. G. T. & Lazić, I. Analysis of depth-sectioning STEM for thick samples and 3D imaging. Ultramicroscopy 207, 112831 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 
    Article 

    Google Scholar
     

  • Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS 
    Article 

    Google Scholar
     

  • LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Position averaged convergent beam electron diffraction: theory and applications. Ultramicroscopy 110, 118–125 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Allen, L. J., D’Alfonso, A. J. & Findlay, S. D. Modelling the inelastic scattering of fast electrons. Ultramicroscopy 151, 11–22 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Source link