May 29, 2024

Autism genes converge on asynchronous development of shared neuron classes – Nature

  • 1.

    Lord, C. et al. Autism spectrum disorder. Nat. Rev. Dis. Primers 6, 5 (2020).

    PubMed 

    Google Scholar
     

  • 2.

    Rosenberg, R. E. et al. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch. Pediatr. Adolesc. Med. 163, 907–914 (2009).

    PubMed 

    Google Scholar
     

  • 3.

    Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Ruzzo, E. K. et al. Inherited and de novo genetic risk for autism impacts shared networks. Cell 178, 850–866 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Cooper, D., Krawczak, M., Polychronakos, C., Tyler-Smith, C. & Kehrer-Sawatzki, H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum. Genet. 132, 1077–1130 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Zlotogora, J. Penetrance and expressivity in the molecular age. Genet. Med. 5, 347–352 (2003).

    PubMed 

    Google Scholar
     

  • 9.

    Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    de Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Stessman, H. A. F. et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 49, 515–526 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Yuen, R. K. C. et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611 (2017).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 13.

    Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Bernier, R. et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158, 263–276 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Faundes, V. et al. Histone lysine methylases and demethylases in the landscape of human developmental disorders. Am. J. Hum. Genet. 102, 175–187 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Vals, M. et al. Coffin-Siris syndrome with obesity, macrocephaly, hepatomegaly and hyperinsulinism caused by a mutation in the ARID1B gene. Eur. J. Hum. Genet. 22, 1327–1329 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Lodato, S. & Arlotta, P. Generating neuronal diversity in the mammalian cerebral cortex. Annu. Rev. Cell Dev. Biol. 31, 699–720 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Greig, L. C., Woodworth, M. B., Galazo, M. J., Padmanabhan, H. & Macklis, J. D. Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci. 14, 755–769 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).


    Google Scholar
     

  • 20.

    Wickramasekara, R. N. & Stessman, H. A. F. Histone 4 lysine 20 methylation: a case for neurodevelopmental disease. Biology 8, 11 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 21.

    Garaschuk, O., Linn, J., Eilers, J. & Konnerth, A. Large-scale oscillatory calcium waves in the immature cortex. Nat. Neurosci. 3, 452–459 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Adelsberger, H., Garaschuk, O. & Konnerth, A. Cortical calcium waves in resting newborn mice. Nat. Neurosci. 8, 988–990 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Wang, Z.-J. et al. Autism risk gene KMT5B deficiency in prefrontal cortex induces synaptic dysfunction and social deficits via alterations of DNA repair and gene transcription. Neuropsychopharmacology 46, 1617–1626 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Villa, C. E. et al. CHD8 haploinsufficiency alters the developmental trajectories of human excitatory and inhibitory neurons linking autism phenotypes with transient cellular defects. Preprint at bioRxiv https://doi.org/10.1101/2020.11.26.399469 (2020).

  • 25.

    Wang, P. et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol. Autism 8, 11 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Tuncbag, N. et al. Network-based interpretation of diverse high-throughput datasets through the Omics Integrator software package. PLoS Comput. Biol. 12, e1004879 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    PubMed 

    Google Scholar
     

  • 28.

    Rubenstein, J. L. R. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Gogolla, N. et al. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord. 1, 172–181 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Dani, V. S. et al. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc. Natl Acad. Sci. USA 102, 12560–12565 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Mariani, J. et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162, 375–390 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Marchetto, M. C. et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry 22, 820–835 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Adhya, D. et al. Atypical neurogenesis in induced pluripotent stem cells from autistic individuals. Biol. Psychiatry 89, 486–496 (2020).

    PubMed 

    Google Scholar
     

  • 34.

    Wade, A. A., Lim, K., Catta-Preta, R. & Nord, A. S. Common CHD8 genomic targets contrast with model-specific transcriptional impacts of CHD8 haploinsufficiency. Front. Mol. Neurosci. 11, 481 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Moffat, J. J., Smith, A. L., Jung, E. M., Ka, M. & Kim, W. Y. Neurobiology of ARID1B haploinsufficiency related to neurodevelopmental and psychiatric disorders. Mol. Psychiatry https://doi.org/10.1038/s41380-021-01060-x (2021).

  • 36.

    Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364, 685–689 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Willsey, A. J. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155, 997–1007 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 16, 551–563 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Chen, A. E. et al. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4, 103–106 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Church, G. M. The personal genome project. Mol. Syst. Biol. 1, 2005.0030 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Velasco, S., Paulsen, B. & Arlotta, P. Highly reproducible human brain organoids recapitulate cerebral cortex cellular diversity. Protoc. Exchange https://doi.org/10.21203/rs.2.9542/v1 (2019).

  • 42.

    Lovell-Badge, R. et al. ISSCR guidelines for stem cell research and clinical translation: the 2021 update. Stem Cell Rep. 16, 1398–1408 (2021).


    Google Scholar
     

  • 43.

    Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Mangeot, P. E. et al. Genome editing in primary cells and in vivo using viral-derived nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat. Commun. 10, 45 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Park, Y.-G. et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. 37, 73–83 (2019).

    CAS 

    Google Scholar
     

  • 47.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Ohgane, K. Quantification of gel bands by an Image J macro, band/peak quantification tool. protocols.io https://doi.org/10.17504/protocols.io.7vghn3w (2019).

  • 49.

    Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2017).

  • 50.

    Müller, J. et al. High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15, 2767–2780 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Ostasiewicz, P., Zielinska, D. F., Mann, M. & Wisniewski, J. R. Proteome, phosphoproteome, and N-glycoproteome are quantitatively preserved in formalin-fixed paraffin embedded tissue and analyzable by high-resolution mass spectrometry. J. Proteome Res. 9, 3688–3700 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Wiśniewski, J. R. Quantitative evaluation of filter aided sample preparation (FASP) and multienzyme digestion FASP protocols. Anal. Chem. 88, 5438–5443 (2016).

    PubMed 

    Google Scholar
     

  • 53.

    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res. 27, 49–54 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Consortium, T. U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2018).


    Google Scholar
     

  • 55.

    Käll, L., Storey, J. D., MacCoss, M. J. & Noble, W. S. Posterior error probabilities and false discovery rates: two sides of the same coin. J. Proteome Res. 7, 40–44 (2008).

    PubMed 

    Google Scholar
     

  • 56.

    Zhang, X. et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat. Protoc. 13, 530–550 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Tuncbag, N. et al. Simultaneous reconstruction of multiple signaling pathways via the prize-collecting steiner forest problem. J. Comput. Biol. 20, 124–136 (2013).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Akhmedov, M. et al. PCSF: an R-package for network-based interpretation of high-throughput data. PLoS Comput. Biol. 13, e1005694 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Yoon, S. et al. GScluster: network-weighted gene-set clustering analysis. BMC Genom. 20, 352 (2019).


    Google Scholar
     

  • 63.

    Quadrato, G., Sherwood, J. L. & Arlotta, P. Long term culture and electrophysiological characterization of human brain organoids. Protoc. Exchange https://doi.org/10.1038/protex.2017.049 (2017).

  • 64.

    Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    McCarthy, D. J. et al. Cardelino: computational integration of somatic clonal substructure and single-cell transcriptomes. Nat. Methods 17, 414–421 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Huang, Y., McCarthy, D. J. & Stegle, O. Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference. Genome Biol. 20, 273 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Pardy, C. mpmi: mixed-pair mutual information estimators (2020).

  • 70.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).


    Google Scholar
     

  • 71.

    Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded effector CD4+ T cell subset in rheumatoid arthritis. Sci. Transl. Med. 10, eaaq0305 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Lun, A. T. L. & Marioni, J. C. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics 18, 451–464 (2017).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Nuclei Isolation from Mouse Brain Tissue for Single Cell ATAC Sequencing Rev B (10x Genomics, 2019).

  • 77.

    Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

  • 79.

    Rainer, J. EnsDb.Hsapiens.v86: ensembl based annotation package (2017).

  • 80.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link