May 23, 2024
Autonomous fuelled directional rotation about a covalent single bond – Nature

Autonomous fuelled directional rotation about a covalent single bond – Nature

  • Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyer, P. D. Energy, life, and ATP (Nobel lecture). Angew. Chem. Int. Ed. 37, 2296–2307 (1998).


    Google Scholar
     

  • Santiveri, M. et al. Structure and function of stator units of the bacterial flagellar motor. Cell 183, 244–257 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, T. R., Tellitu, I. & Sestelo, J. P. In search of molecular ratchets. Angew. Chem. Int. Ed. Engl. 36, 1866–1868 (1997).

    CAS 

    Google Scholar
     

  • Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mock, W. L. & Ochwat, K. J. Theory and example of a small-molecule motor. J. Phys. Org. Chem. 16, 175–182 (2003).

    CAS 

    Google Scholar
     

  • Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahl, B. J. & Branchaud, B. P. 180° unidirectional bond rotation in a biaryl lactone artificial molecular motor prototype. Org. Lett. 8, 5841–5844 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Collins, B. S. L., Kistemaker, J. C. M., Otten, E. & Feringa, B. L. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle. Nat. Chem. 8, 860–866 (2016).

    CAS 

    Google Scholar
     

  • Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. A chemically driven rotary molecular motor based on reversible lactone formation with perfect unidirectionality. Chem 6, 2420–2429 (2020).

    CAS 

    Google Scholar
     

  • Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pooler, D. R. S., Lubbe, A. S., Crespi, S. & Feringa, B. L. Designing light-driven rotary molecular motors. Chem. Sci. 12, 14964–14986 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, T. R. et al. Progress toward a rationally designed, chemically powered rotary molecular motor. J. Am. Chem. Soc. 129, 376–386 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. 1, Ch. 46 (Addison-Wesley Publishing Company, 1963).

  • Davis, A. P. Tilting at windmills? The second law survives. Angew. Chem. Int. Ed. 37, 909–910 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Fogassy, K. et al. Efficient synthesis and resolution of (±)-1-[2-carboxy-6-(trifluoromethyl)phenyl]pyrrole-2-carboxylic acid. Tetrahedron Asymmetry 11, 4771–4780 (2000).

    CAS 

    Google Scholar
     

  • Faigl, F., Tárkányi, G., Fogassy, K., Tepfenhardt, D. & Thurner, A. Synthesis and stereochemical stability of new atropisomeric 1-(substituted phenyl)pyrrole derivatives. Tetrahedron 64, 1371–1377 (2008).

    CAS 

    Google Scholar
     

  • Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kariyawasam, L. S., Hossain, M. M. & Hartley, C. S. The transient covalent bond in abiotic nonequilibrium systems. Angew. Chem. Int. Ed. 60, 12648–12658 (2021).

    CAS 

    Google Scholar
     

  • Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kariyawasam, L. S. & Hartley, C. S. Dissipative assembly of aqueous carboxylic acid anhydrides fueled by carbodiimides. J. Am. Chem. Soc. 139, 11949–11955 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Bal, S., Das, K., Ahmed, S. & Das, D. Chemically fueled dissipative self-assembly that exploits cooperative catalysis. Angew. Chem. Int. Ed. 58, 244–247 (2019).

    CAS 

    Google Scholar
     

  • Astumian, R. D. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys. J. 108, 291–303 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dálaigh, C. Ó. & Connon, S. J. Nonenzymatic acylative kinetic resolution of Baylis-Hillman adducts. J. Org. Chem. 72, 7066–7069 (2007).

    PubMed 

    Google Scholar
     

  • Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • García-López, V. et al. Molecular machines open cell membranes. Nature 548, 567–572 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Feng, L. et al. Active mechanisorption driven by pumping cassettes. Science 374, 1215–1221 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, D., et al. Pumping between phases with a pulsed-fuel molecular ratchet. Preprint at https://doi.org/10.33774/chemrxiv-2021-fl7tv (2021).

  • Zhang, Q. et al. Muscle-like artificial molecular actuators for nanoparticles. Chem 4, 2670–2684 (2018).

    CAS 

    Google Scholar
     

  • Astumian, R. D. & Bier, M. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys. J. 70, 637–653 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Astumian, R. D. Thermodynamics and kinetics of a Brownian Motor. Science 276, 917–922 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008).

    PubMed 

    Google Scholar
     

  • Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayalath, I. M., Wang, H., Mantel, G., Kariyawasam, L. S. & Hartley, C. S. Chemically fueled transient geometry changes in diphenic acids. Org. Lett. 22, 7567–7571 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Jayalath, I. M., Gerken, M. M., Mantel, G. & Hartley, C. S. Substituent effects on transient, carbodiimide-induced geometry changes in diphenic acids. J. Org. Chem. 86, 12024–12033 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Amano, S. et al. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat. Chem. (2022) https://doi.org/10.1038/s41557-022-00899-z.

  • Ma, B. & Nussinov, R. Enzyme dynamics point to stepwise conformational selection in catalysis. Curr. Opin. Chem. Biol. 14, 652–659 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamerlin, S. C. & Warshel, A. At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins 78, 1339–1375 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krajnik, B. et al. Defocused imaging of UV-driven surface-bound molecular motors. J. Am. Chem. Soc. 139, 7156–7159 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl. Acad. Sci. USA 115, 9423–9431 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link