May 19, 2024
Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts – Nature

Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts – Nature

  • Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Saavedra, J. et al. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, E. et al. CO2 hydrogenation on Cu/Al2O3: role of the metal/support interface in driving activity and selectivity of a bifunctional catalyst. Angew. Chem. Int. Ed. 58, 13989–13996 (2019).

    CAS 

    Google Scholar
     

  • Shekhar, M. et al. Size and support effects for the water–gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 134, 4700–4708 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Carrasquillo-Flores, R. et al. Reverse water–gas shift on interfacial sites formed by deposition of oxidized molybdenum moieties onto gold nanoparticles. J. Am. Chem. Soc. 137, 10317–10325 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Kattel, S., Liu, P. & Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 139, 9739–9754 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Z. J. et al. Importance of metal–oxide interfaces in heterogeneous catalysis: a combined DFT, microkinetic, and experimental study of water–gas shift on Au/MgO. J. Catal. 345, 157–169 (2017).

    CAS 

    Google Scholar
     

  • Blasco, T. et al. Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center. Angew. Chem. Int. Ed. 46, 3938–3941 (2007).

    CAS 

    Google Scholar
     

  • Campos, J. Bimetallic cooperation across the periodic table. Nat. Rev. Chem. 4, 696–702 (2020).

    CAS 

    Google Scholar
     

  • Hetterscheid, D. G. H. et al. Binuclear cooperative catalysts for the hydrogenation and hydroformylation of olefins. ChemCatChem 5, 2785–2793 (2013).

    CAS 

    Google Scholar
     

  • Garland, M. The catalytic binuclear elimination reaction: importance of non-linear kinetic effects and increased synthetic efficiency. Top. Organomet. Chem. 59, 187–231 (2015).


    Google Scholar
     

  • Alexeev, O., Shelef, M. & Gates, B. C. MgO-supported platinum–tungsten catalysts prepared from organometallic precursors: platinum clusters isolated on dispersed tungsten. J. Catal. 164, 1–15 (1996).

    CAS 

    Google Scholar
     

  • Matsubu, J. C. et al. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Lwin, S. et al. Nature of WOx sites on SiO2 and their molecular structure–reactivity/selectivity relationships for propylene metathesis. ACS Catal. 6, 3061–3071 (2016).

    CAS 

    Google Scholar
     

  • Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Sparta, M., Børve, K. J. & Jensen, V. R. Activity of rhodium-catalyzed hydroformylation: added insight and predictions from theory. J. Am. Chem. Soc. 129, 8487–8499 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, C., Wang, W., Yan, L. & Ding, Y. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts. Front. Chem. Sci. Eng. 12, 113–123 (2018).

    CAS 

    Google Scholar
     

  • Mol, J. C. Industrial applications of olefin metathesis. J. Mol. Catal. A 213, 39–45 (2004).

    CAS 

    Google Scholar
     

  • Ross-Medgaarden, E. I. & Wachs, I. E. Structural determination of bulk and surface tungsten oxides with UV–vis diffuse reflectance spectroscopy and raman spectroscopy. J. Phys. Chem. C 111, 15089–15099 (2007).

    CAS 

    Google Scholar
     

  • Barton, D. G. et al. Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630–640 (1999).

    CAS 

    Google Scholar
     

  • Ro, I. et al. Synthesis of heteroatom Rh-ReOx atomically dispersed species on Al2O3 and their tunable catalytic reactivity in ethylene hydroformylation. ACS Catal. 9, 10899–10912 (2019).

    CAS 

    Google Scholar
     

  • Rice, C. A. et al. The oxidation state of dispersed Rh on Al2O3. J. Chem. Phys. 74, 6487–6497 (1981).

    ADS 
    CAS 

    Google Scholar
     

  • Lee, S. et al. Theoretical study of ethylene hydroformylation on atomically dispersed Rh/Al2O3 catalysts: reaction mechanism and influence of ReOx promoter. ACS Catal. 11, 9506–9518 (2021).

    CAS 

    Google Scholar
     

  • Perez-Aguilar, J. E. et al. Isostructural atomically dispersed rhodium catalysts supported on SAPO-37 and on HY zeolite. J. Am. Chem. Soc. 142, 11474–11485 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Brundage, M. A. & Chuang, S. S. C. Experimental and modeling study of hydrogenation using deuterium step transient response during ethylene hydroformylation. J. Catal. 164, 94–108 (1996).

    CAS 

    Google Scholar
     

  • Lange, J. P. Performance metrics for sustainable catalysis in industry. Nat. Catal. 4, 186–192 (2021).

    CAS 

    Google Scholar
     

  • Digne, M. et al. Hydroxyl groups on γ-alumina surfaces: a DFT study. J. Catal. 211, 1–5 (2002).

    CAS 

    Google Scholar
     

  • Navidi, N., Thybaut, J. W. & Marin, G. B. Experimental investigation of ethylene hydroformylation to propanal on Rh and Co based catalysts. Appl. Catal. A 469, 357–366 (2014).

    CAS 

    Google Scholar
     

  • Shylesh, S. et al. In situ formation of Wilkinson-type hydroformylation catalysts: insights into the structure, stability, and kinetics of triphenylphosphine- and xantphos-modified Rh/SiO2. ACS Catal. 3, 348–357 (2013).

    CAS 

    Google Scholar
     

  • Whittaker, T. et al. H2 oxidation over supported Au nanoparticle catalysts: evidence for heterolytic H2 activation at the metal–support interface. J. Am. Chem. Soc. 140, 16469–16487 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Baz, A. & Holewinski, A. Understanding the interplay of bifunctional and electronic effects: microkinetic modeling of the CO electro-oxidation reaction. J. Catal. 384, 1–13 (2020).

    CAS 

    Google Scholar
     

  • Darby, M. T. et al. Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys. J. Phys. Chem. Lett. 9, 5636–5646 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, M. et al. Analyzing the case for bifunctional catalysis. Angew. Chem. Int. Ed. 55, 5210–5214 (2016).

    CAS 

    Google Scholar
     

  • Kumar, G. et al. Multicomponent catalysts: limitations and prospects. ACS Catal. 8, 3202–3208 (2018).

    CAS 

    Google Scholar
     

  • Qi, J. et al. Selective methanol carbonylation to acetic acid on heterogeneous atomically dispersed ReO4/SiO2 catalysts. J. Am. Chem. Soc. 142, 14178–14189 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hoffman, A. J. et al. Theoretical and experimental characterization of adsorbed CO and NO on γ-Al2O3-supported Rh nanoparticles. J. Phys. Chem. C 125, 19733–19755 (2021).

    CAS 

    Google Scholar
     

  • Sirita, J., Phanichphant, S. & Meunier, F. C. Quantitative analysis of adsorbate concentrations by diffuse reflectance FT-IR. Anal. Chem. 79, 3912–3918 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Lwin, S. et al. Surface ReOx sites on Al2O3 and their molecular structure–reactivity relationships for olefin metathesis. ACS Catal. 5, 1432–1444 (2015).

    CAS 

    Google Scholar
     

  • Chupas, P. J. et al. A versatile sample-environment cell for non-ambient X-ray scattering experiments. J. Appl. Crystallogr. 41, 822–824 (2008).

    CAS 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Ro, I. et al. The role of Pt-FexOy interfacial sites for CO oxidation. J. Catal. 358, 19–26 (2018).

    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 

    Google Scholar
     

  • Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Sheppard, D. et al. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • Coltrin, M. E., Kee, R. J., Rupley, F. M. & Meeks, E. SURFACE CHEMKIN-III: A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-surface–Gas-phase Interface Report SAND96-8217 (Sandia, 1996).

  • Lym, J., Wittreich, G. R. & Vlachos, D. G. A Python multiscale thermochemistry toolbox (pMuTT) for thermochemical and kinetic parameter estimation. Comput. Phys. Commun. 247, 106864 (2020).

    CAS 

    Google Scholar
     

  • Source link