May 26, 2024

Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy

  • 1.

    Gali, A. & George, E. P. Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78 (2013).

    CAS 

    Google Scholar
     

  • 2.

    Gludovatz, B. et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Kumar, K., Van Swygenhoven, H. & Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Labusch, R. A statistical theory of solid solution hardening. Phys. Status Solidi B 41, 659–669 (1970).

    ADS 

    Google Scholar
     

  • 7.

    Gladman, T. Precipitation hardening in metals. Mater. Sci. Technol. 15, 30–36 (1999).

    CAS 

    Google Scholar
     

  • 8.

    Jiang, S. et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544, 460 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Yang, T. et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362, 933–937 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    He, B. et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science 357, 1029–1032 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    La Roca, P., Baruj, A., Sobrero, C. E., Malarria, J. A. & Sade, M. Nanoprecipitation effects on phase stability of Fe-Mn-Al-Ni alloys. J. Alloys Compd. 708, 422–427 (2017).


    Google Scholar
     

  • 13.

    Luo, H., Shan, F., Huo, Y. & Wang, Y. Effect of precipitates on phase transformation behavior of Ti-49 at.% Ni film. Thin Solid Films 339, 305–308 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Kaufman, L. & Cohen, M. The martensitic transformation in the iron-nickel system. JOM 8, 1393–1401 (1956).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Liang, Y.-J. et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat. Commun. 9, 4063 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Raabe, D., Ponge, D., Dmitrieva, O. & Sander, B. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility. Scr. Mater. 60, 1141–1144 (2009).

    CAS 

    Google Scholar
     

  • 17.

    Nishiyama, Z. X-ray investigation of the mechanism of the transformation from face centered cubic lattice to body centered cubic. Sci. Rep. Tohoku Univ. 23, 637 (1934).

    CAS 

    Google Scholar
     

  • 18.

    Fisher, J., Hollomon, J. & Turnbull, D. Kinetics of the austenite → martensite transformation. Metals Trans. 185, 691–700 (1949).


    Google Scholar
     

  • 19.

    Jimenez-Melero, E. et al. Martensitic transformation of individual grains in low-alloyed TRIP steels. Scr. Mater. 56, 421–424 (2007).

    CAS 

    Google Scholar
     

  • 20.

    Yang, H.-S. & Bhadeshia, H. Austenite grain size and the martensite-start temperature. Scr. Mater. 60, 493–495 (2009).

    CAS 

    Google Scholar
     

  • 21.

    Jin, S., Morris, J., Chen, Y., Thomas, G. & Jaffee, R. An investigation of transformation strengthening in precipitation-hardened Fe-Ni austenite. Metall. Trans. A 9, 1625–1633 (1978).


    Google Scholar
     

  • 22.

    Wang, T. et al. Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying. Sci. Rep. 11, 1–10 (2021).

    CAS 

    Google Scholar
     

  • 23.

    Kaufman, L. & Bernstein, H. Computer Calculation of Phase Diagrams. With Special Reference to Refractory Metals (Academic Press, 1970).

  • 24.

    Cao, W. et al. PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33, 328–342 (2009).

    CAS 

    Google Scholar
     

  • 25.

    Yeh, J. W., Chen, Y. L., Lin, S. J. & Chen, S. K. in Materials Science Forum Vol. 560 (eds Balmori-Ramirez, H. et al.) 1–9 (Trans Tech Publ, 2007).

  • 26.

    Cacciamani, G. et al. Critical evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti alloy systems. Intermetallics 14, 1312–1325 (2006).

    CAS 

    Google Scholar
     

  • 27.

    Borgenstam, A. & Hillert, M. Massive transformation in the Fe–Ni system. Acta Mater. 48, 2765–2775 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Nishiyama, Z. Martensitic Transformation (Elsevier, 2012).

  • 29.

    Ardell, A. J. Precipitation hardening. Metall. Trans. A 16, 2131–2165 (1985).


    Google Scholar
     

  • 30.

    Gorbatov, O. I. et al. Effect of composition on antiphase boundary energy in Ni3Al-based alloys: ab initio calculations. Phys. Rev. B 93, 224106 (2016).

    ADS 

    Google Scholar
     

  • 31.

    Rosenberg, J. & Piehler, H. Calculation of the Taylor factor and lattice rotations for bcc metals deforming by pencil glide. Metall. Trans. 2, 257–259 (1971).

    CAS 

    Google Scholar
     

  • 32.

    Zhang, M., Li, L., Fu, R., Krizan, D. & De Cooman, B. Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels. Mater. Sci. Eng. A 438–440, 296–299 (2006).


    Google Scholar
     

  • 33.

    Zhao, J.-l., Yan, X., Wen, S. & Lin, L. Microstructure and mechanical properties of high manganese TRIP steel. J. Iron Steel Res. Int. 19, 57–62 (2012).

    CAS 

    Google Scholar
     

  • 34.

    Bouaziz, O., Zurob, H. & Huang, M. Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res. Int. 84, 937–947 (2013).

    CAS 

    Google Scholar
     

  • 35.

    Boyer, H. E. Atlas of Stress–Strain Curves (ASM International, 1987).

  • 36.

    Morris, J., Jr. Maraging steels: Making steel strong and cheap. Nat. Mater. 16, 787 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    García-Mateo, C. & Caballero, F. G. The role of retained austenite on tensile properties of steels with bainitic microstructures. Mater. Trans. 46, 1839–1846 (2005).


    Google Scholar
     

  • 38.

    Kim, S.-H., Kim, H. & Kim, N. J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77–79 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    De Moor, E., Speer, J. G., Matlock, D. K., Kwak, J.-H. & Lee, S.-B. Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels. ISIJ Int. 51, 137–144 (2011).


    Google Scholar
     

  • 40.

    Dong, X., Shen, Y., Yin, T., Misra, R. & Lin, G. Strengthening a medium-carbon steel to 2800 MPa by tailoring nanosized precipitates and the phase ratio. Mater. Sci. Eng. A 759, 725–735 (2019).

    CAS 

    Google Scholar
     

  • 41.

    Bouaziz, O., Barbier, D., Cugy, P. & Petigand, G. Effect of process parameters on a metallurgical route providing nano‐structured single phase steel with high work-hardening. Adv. Eng. Mater. 14, 49–51 (2012).

    CAS 

    Google Scholar
     

  • 42.

    Wang, H., Tao, N. & Lu, K. Strengthening an austenitic Fe–Mn steel using nanotwinned austenitic grains. Acta Mater. 60, 4027–4040 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Otto, F. et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743–5755 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Wu, Z., Bei, H., Pharr, G. M. & George, E. P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428–441 (2014).

    CAS 

    Google Scholar
     

  • 45.

    He, J. et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187–196 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Wignall, G. D. et al. The 40 m general purpose small-angle neutron scattering instrument at Oak Ridge National Laboratory. J. Appl. Cryst. 45, 990–998 (2012).

    CAS 

    Google Scholar
     

  • 48.

    Kotlarchyk, M. & Chen, S. H. Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. J. Chem. Phys. 79, 2461–2469 (1983).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Thompson, K. et al. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131–139 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Soven, P. Coherent-potential model of substitutional disordered alloys. Phys. Rev. 156, 809 (1967).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Taylor, D. Vibrational properties of imperfect crystals with large defect concentrations. Phys. Rev. 156, 1017 (1967).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Stocks, G., Temmerman, W. & Gyorffy, B. Complete solution of the Korringa–Kohn–Rostoker coherent-potential-approximation equations: Cu–Ni alloys. Phys. Rev. Lett. 41, 339 (1978).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Ebert, H., Koedderitzsch, D. & Minar, J. Calculating condensed matter properties using the KKR–Green’s function method—recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).

    ADS 

    Google Scholar
     

  • 54.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Liechtenstein, A. I., Katsnelson, M., Antropov, V. & Gubanov, V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Vaks, V. & Zeĭn, N. Theory of phase transitions in solid solutions. J. Exp. Theor. Phys. 40, 537 (1975).

    ADS 

    Google Scholar
     

  • 59.

    Vaks, V. & Samolyuk, G. On accuracy of different cluster models used in describing ordering phase transitions in fcc alloys. J. Exp. Theor. Phys. 88, 89–100 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Chuang, Y.-Y., Chang, Y. A., Schmid, R. & Lin, J.-C. Magnetic contributions to the thermodynamic functions of alloys and the phase equilibria of Fe–Ni system below 1200 K. Metall. Trans. A 17, 1361–1372 (1986).


    Google Scholar
     

  • 61.

    Edwards, D. The paramagnetic state of itinerant electron systems with local magnetic moments. I. Static properties. J. Phys. F Met. Phys. 12, 1789 (1982).

    ADS 
    CAS 

    Google Scholar
     

  • 62.

    Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. Optimized pseudopotentials. Phys. Rev. B 41, 1227 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Ramer, N. J. & Rappe, A. M. Virtual-crystal approximation that works: locating a compositional phase boundary in Pb(Zr1−xTix)O3. Phys. Rev. B 62, R743 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Kurdjumov, G. & Sachs, G. Crystallographic orientation relationship between α-and γ-Fe. Ann. Phys. 64, 325 (1930).


    Google Scholar
     

  • 65.

    American Iron and Steel Institute. High-Temperature Characteristics of Stainless Steel A Designer’s Handbook Report No. 9004 (Nickel Development Institute, 1979); https://nickelinstitute.org/media/1699/high_temperaturecharacteristicsofstainlesssteel_9004_.pdf

  • 66.

    Warlimont, H. & Martienssen, W. Springer Handbook of Materials Data (Springer, 2018).

  • Source link