May 28, 2024
Biocatalytic oxidative cross-coupling reactions for biaryl bond formation – Nature

Biocatalytic oxidative cross-coupling reactions for biaryl bond formation – Nature

  • Yet, L. Privileged Structures in Drug Discovery: Medicinal Chemistry and Synthesis 1st edn, 83–154 (Wiley, 2018).

  • Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashenhurst, J. A. Intermolecular oxidative cross-coupling of arenes. Chem. Soc. Rev. 39, 540–548 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Kozlowski, M. C. Oxidative coupling in complexity building transforms. Acc. Chem. Res. 50, 638–643 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Lan, J. & You, J. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Hüttel, W. & Müller, M. Regio- and stereoselective intermolecular phenol coupling enzymes in secondary metabolite biosynthesis. Nat. Prod. Rep. 38, 1011–1043 (2021).

    PubMed 

    Google Scholar
     

  • Lunxiang, Y. & Liebscher, J. Carbon−carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 107, 133–173 (2007).


    Google Scholar
     

  • Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    PubMed 

    Google Scholar
     

  • Yin, J., Rainka, M. P., Zhang, X.-X. & Buchwald, S. L. A highly active Suzuki catalyst for the synthesis of sterically hindered biaryls: novel ligand coordination. J. Am. Chem. Soc. 124, 1162–1163 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Cammidge, A. N. & Crépy, K. V. L. Synthesis of chiral binaphthalenes using the asymmetric Suzuki reaction. Tetrahedron 60, 4377–4386 (2004).

    CAS 

    Google Scholar
     

  • Martin, R. & Buchwald, S. L. Palladium-catalyzed Suzuki−Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res. 41, 1461–1473 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valente, C. et al. The development of bulky palladium NHC complexes for the most-challenging cross-coupling reactions. Angew. Chem. Int. Ed. 51, 3314–3332 (2012).

    CAS 

    Google Scholar
     

  • Patel, N. D. et al. Computationally assisted mechanistic investigation and development of Pd-catalyzed asymmetric Suzuki–Miyaura and Negishi cross-coupling reactions for tetra-ortho-substituted biaryl synthesis. ACS Catal. 8, 10190–10209 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ackermann, L., Potukuchi, H. K., Althammer, A., Born, R. & Mayer, P. Tetra-ortho-substituted biaryls through palladium-catalyzed Suzuki−Miyaura couplings with a diaminochlorophosphine ligand. Org. Lett. 12, 1004–1007 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y. E., Cao, T., Torruellas, C. & Kozlowski, M. C. Selective oxidative homo- and cross-coupling of phenols with aerobic catalysts. J. Am. Chem. Soc. 136, 6782–6785 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nieves-Quinones, Y. et al. Chromium-salen catalyzed cross-coupling of phenols: mechanism and origin of the selectivity. J. Am. Chem. Soc. 141, 10016–10032 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shalit, H., Dyadyuk, A. & Pappo, D. Selective oxidative phenol coupling by iron catalysis. J. Org. Chem. 84, 1677–1686 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Reiss, H. et al. Cobalt(II)[salen]-catalyzed selective aerobic oxidative cross-coupling between electron-rich phenols and 2-naphthols. J. Org. Chem. 84, 7950–7960 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Röckl, J. L., Schollmeyer, D., Franke, R. & Waldvogel, S. R. Dehydrogenative anodic C−C coupling of phenols bearing electron-withdrawing groups. Angew. Chem. Int. Ed. 59, 315–319 (2020).


    Google Scholar
     

  • Kang, H. et al. Enantioselective vanadium-catalyzed oxidative coupling: development and mechanistic insights. J. Org. Chem. 83, 14362–14384 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Libman, A. et al. Synthetic and predictive approach to unsymmetrical biphenols by iron-catalyzed chelated radical–anion oxidative coupling. J. Am. Chem. Soc. 137, 11453–11460 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Morimoto, K., Sakamoto, K., Ohshika, T., Dohi, T. & Kita, Y. Organo-iodine(III)-catalyzed oxidative phenol–arene and phenol–phenol cross-coupling reaction. Angew. Chem. Int. Ed. 55, 3652–3656 (2016).

    CAS 

    Google Scholar
     

  • More, N. Y. & Jeganmohan, M. Oxidative cross-coupling of two different phenols: an efficient route to unsymmetrical biphenols. Org. Lett. 17, 3042–3045 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Egami, H. & Katsuki, T. Iron-catalyzed asymmetric aerobic oxidation: oxidative coupling of 2-naphthols. J. Am. Chem. Soc. 131, 6082–6083 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Hovorka, M., Günterova, J. & Zavada, J. Highly selective oxidative cross-coupling of substituted 2-naphthols: a convenient approach to unsymmetrical 1, 1′-binaphthalene-2, 2′-diols. Tetrahedron Lett. 31, 413–416 (1990).

    CAS 

    Google Scholar
     

  • Li, X., Hewgley, J. B., Mulrooney, C. A., Yang, J. & Kozlowski, M. C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes: efficient formation of chiral functionalized BINOL derivatives. J. Org. Chem. 68, 5500–5511 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Tian, J.-M. et al. Copper-complex-catalyzed asymmetric aerobic oxidative cross-coupling of 2-naphthols: enantioselective synthesis of 3,3′-substituted C1-symmetric BINOLs. Angew. Chem. Int. Ed. 58, 11023–11027 (2019).

    CAS 

    Google Scholar
     

  • Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).

    CAS 

    Google Scholar
     

  • Kočovský, P., Vyskočil, Š. & Smrčina, M. Non-symmetrically substituted 1,1‘-binaphthyls in enantioselective catalysis. Chem. Rev. 103, 3213–3246 (2003).

    PubMed 

    Google Scholar
     

  • Kozlowski, M. C., Morgan, B. J. & Linton, E. C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling. Chem. Soc. Rev. 38, 3193–3207 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 111, 563–639 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Aldemir, H., Richarz, R. & Gulder, T. A. The biocatalytic repertoire of natural biaryl formation. Angew. Chem. Int. Ed. 53, 8286–8293 (2014).

    CAS 

    Google Scholar
     

  • Mate, D. M. & Alcalde, M. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb. Biotechnol. 10, 1457–1467 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sagui, F. et al. Laccase-catalyzed coupling of catharanthine and vindoline: an efficient approach to the bisindole alkaloid anhydrovinblastine. Tetrahedron 65, 312–317 (2009).

    CAS 

    Google Scholar
     

  • Obermaier, S., Thiele, W., Fürtges, L. & Müller, M. Enantioselective phenol coupling by laccases in the biosynthesis of fungal dimeric naphthopyrones. Angew. Chem. Int. Ed. 58, 9125–9128 (2019).

    CAS 

    Google Scholar
     

  • Fasan, R. Tuning P450 enzymes as oxidation catalysts. ACS Catal. 2, 647–666 (2012).

    CAS 

    Google Scholar
     

  • Gil Girol, C. et al. Regio‐ and stereoselective oxidative phenol coupling in Aspergillus niger. Angew. Chem. Int. Ed. 51, 9788–9791 (2012).

    CAS 

    Google Scholar
     

  • Mazzaferro, L. S., Huttel, W., Fries, A. & Müller, M. Cytochrome P450-catalyzed regio- and stereoselective phenol coupling of fungal natural products. J. Am. Chem. Soc. 137, 12289–12295 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Chakrabarty, S., Wang, Y., Perkins, J. C. & Narayan, A. R. H. Scalable biocatalytic C–H oxyfunctionalization reactions. Chem. Soc. Rev. 49, 8137–8155 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noji, M., Nakajima, M. & Koga, K. A new catalytic system for aerobic oxidative coupling of 2-naphthol derivatives by the use of CuCl-amine complex: a practical synthesis of binaphthol derivatives. Tetrahedron Lett. 35, 7983–7984 (1994).

    CAS 

    Google Scholar
     

  • Nakajima, M. Synthesis and application of novel biaryl compounds with axial chirality as catalysts in enantioselective reactions. Yakugaku Zasshi 120, 68–75 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Langeslay, R. R. et al. Catalytic applications of vanadium: a mechanistic perspective. Chem. Rev. 119, 2128–2191 (2018).

    PubMed 

    Google Scholar
     

  • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerlt, J. A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zallot, R., Oberg, N. O. & Gerlt, J. A. ‘Democratized’ genomic enzymology web tools for functional assignment. Curr. Opin. Chem. Biol. 47, 77–85 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zallot, R., Oberg, N. & Gerlt, J. A. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Funa, N., Funabashi, M., Ohnishi, Y. & Horinouchi, S. Biosynthesis of hexahydroxyperylenequinone melanin via oxidative aryl coupling by cytochrome P-450 in Streptomyces griseus. J. Bacteriol. 187, 8149–8155 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, B. et al. Binding of two flaviolin substrate molecules, oxidative coupling, and crystal structure of Streptomyces coelicolor A3(2) cytochrome P450 158A2. J. Biol. Chem. 280, 11599–11607 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, S., Podust, L. M. & Sherman, D. H. Engineering and analysis of a self-sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase domain. J. Am. Chem. Soc. 129, 12940–12941 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link