May 24, 2024
Biosynthesis of selenium-containing small molecules in diverse microorganisms – Nature

Biosynthesis of selenium-containing small molecules in diverse microorganisms – Nature

  • Reich, H. J. & Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yamashita, Y. & Yamashita, M. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J. Biol. Chem. 285, 18134–18138 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheah, I. K. & Halliwell, B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim. Biophys. Acta 1822, 784–793 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rotruck, J. T. et al. Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588–590 (1973).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhong, L. & Holmgren, A. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J. Biol. Chem. 275, 18121–18128 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aachmann, F. L. et al. Insights into function, catalytic mechanism, and fold evolution of selenoprotein methionine sulfoxide reductase B1 through structural analysis. J. Biol. Chem. 285, 33315–33323 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berry, M. J., Kieffer, J. D., Harney, J. W. & Larsen, P. R. Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. J. Biol. Chem. 266, 14155–14158 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He, S. H. et al. EPR studies with 77Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. J. Biol. Chem. 264, 2678–2682 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wittwer, A. J., Tsai, L., Ching, W. M. & Stadtman, T. C. Identification and synthesis of a naturally occurring selenonucleoside in bacterial tRNAs: 5-[(methylamino)methyl]-2-selenouridine. Biochemistry 23, 4650–4655 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weekley, C. M. & Harris, H. H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 42, 8870–8894 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ehrenreich, A., Forchammer, K., Tormay, P., Veprek, B. & Böck, A. Selenoprotein synthesis in E. coli. Purification and characterisation of the enzyme catalysing selenium activation. Eur. J. Biochem. 206, 767–773 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Forchhammer, K. & Böck, A. Selenocysteine synthase from Escherichia coli. Analysis of the reaction sequence. J. Biol. Chem. 266, 6324–6328 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wolfe, M. D. et al. Functional diversity of the rhodanese homology domain. J. Biol. Chem. 279, 1801–1809 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stone, M. J. & Williams, D. H. On the evolution of functional secondary metabolites (natural products). Mol. Microbiol. 6, 29–34 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin, J. et al. Comparative genomics reveals new candidate genes involved in selenium metabolism in prokaryotes. Genome Biol. Evol. 7, 664–676 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seebeck, F. P. In vitro reconstitution of mycobacterial ergothioneine biosynthesis. J. Am. Chem. Soc. 132, 6632–6633 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yamashita, Y. et al. Selenoneine, total selenium, and total mercury content in the muscle of fishes. Fish. Sci. 77, 679–686 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Yamashita, M. & Yamashita, Y. in Springer Handbook of Marine Biotechnology (ed. Kim, S. K.) 1059–1069 (Springer, 2015).

  • Lim, D., Gründemann, D. & Seebeck, F. P. Total synthesis and functional characterization of selenoneine. Angew. Chem. Int. Ed. 58, 15026–15030 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Pluskal, T., Ueno, M. & Yanagida, M. Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system. PLoS ONE 9, e97774 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goncharenko, K. V. et al. Selenocysteine as a substrate, an inhibitor and a mechanistic probe for bacterial and fungal iron‐dependent sulfoxide synthases. Chem. Eur. 26, 1328–1334 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Goncharenko, K. V., Vit, A., Blankenfeldt, W. & Seebeck, F. P. Structure of the sulfoxide synthase EgtB from the ergothioneine biosynthetic pathway. Angew. Chem. Int. Ed. 54, 2821–2824 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Naowarojna, N. et al. Crystal structure of the ergothioneine sulfoxide synthase from Candidatus Chloracidobacterium thermophilum and structure-guided engineering to modulate its substrate selectivity. ACS Catal. 9, 6955–6961 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stampfli, A. R. et al. An alternative active site architecture for O2 activation in the ergothioneine biosynthetic EgtB from Chloracidobacterium thermophilum. J. Am. Chem. Soc. 141, 5275–5285 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vit, A., Mashabela, G. T., Blankenfeldt, W. & Seebeck, F. P. Structure of the ergothioneine-biosynthesis amidohydrolase EgtC. ChemBioChem 16, 1490–1496 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Song, H. et al. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate. Sci Rep. 5, 11870 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reich, H. J., Renga, J. M. & Reich, I. L. Organoselenium chemistry. Conversion of ketones to enones by selenoxide syn elimination. J. Am. Chem. Soc. 97, 5434–5447 (1975).

    CAS 
    Article 

    Google Scholar
     

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-hit: accelerated for clustering the next-generation sequencing data. Bioinformatics. 28, 3150–3152 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McCulloch, K. M., Kinsland, C., Begley, T. P. & Ealick, S. E. Structural studies of thiamin monophosphate kinase in complex with substrates and products. Biochemistry 47, 3810–3821 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Katoh, K. Mafft: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tareen, A. & Kinney, J. B. Logomaker: beautiful sequence logos in python. Bioinformatics 36, 2272–2274 (2019).

    PubMed Central 
    Article 

    Google Scholar
     

  • Veres, Z., Kim, I. Y., Scholz, T. D. & Stadtman, T. C. Selenophosphate synthetase. Enzyme properties and catalytic reaction. J. Biol. Chem. 269, 10597–10603 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, I. Y., Veres, Z. & Stadtman, T. C. Escherichia coli mutant SELD enzymes. The cysteine 17 residue is essential for selenophosphate formation from ATP and selenide. J. Biol. Chem. 267, 19650–19654 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Glass, R. S. et al. Monoselenophosphate: synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX. Biochemistry 32, 12555–12559 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vit, A., Misson, L., Blankenfeldt, W. & Seebeck, F. P. Ergothioneine biosynthetic methyltransferase EgtD reveals the structural basis of aromatic amino acid betaine biosynthesis. ChemBioChem 16, 119–125 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Kumar, A. A., Illyes, T. Z., Kover, K. E. & Szilagyi, L. Convenient syntheses of 1,2-trans selenoglycosides using isoselenuronium salts as glycosylselenenyl transfer reagents. Carbohydrate Res. 360, 8–18 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Pravdic, N. & Fletcher, H. G. The behavior of 2-acetamido-2-deoxy-d-mannose with isopropenyl acetate in the presence of p-toluenesulfonic acid. I. Isolation and identification of derivatives of 2-amino-d-glucal (2-amino-1,2-dideoxy-d-arabino-hex-1-enopyranose) and of other products. J. Org. Chem. 32, 1806–1810 (1967).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Source link