May 7, 2024
Bipolar impact and phasing of Heinrich-type climate variability – Nature

Bipolar impact and phasing of Heinrich-type climate variability – Nature

  • Hemming, S. R. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).

  • Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stríkis, N. M. et al. South American monsoon response to iceberg discharge in the North Atlantic. Proc. Natl Acad. Sci. USA 115, 3788–3793 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, D. C. et al. Precipitation response to Heinrich Event-3 in the northern Indochina as revealed in a high-resolution speleothem record. J. Asian Earth Sci. X 7, 100090 (2022).

  • Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–336 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynch-Stieglitz, J. The Atlantic Meridional Overturning Circulation and abrupt climate change. Ann. Rev. Mar. Sci. 9, 83–104 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Capron, E. et al. The anatomy of past abrupt warmings recorded in Greenland ice. Nat. Commun. 12, 2106 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedro, J. B. et al. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quat. Sci. Rev. 192, 27–46 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hodell, D. A. et al. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography 32, 284–303 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Barker, S. et al. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 1097–1102 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, X. et al. Coupled atmosphere–ice–ocean dynamics during Heinrich Stadial 2. Nat. Commun. 13, 5867 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl Acad. Sci. USA 108, 13415–13419 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Max, L., Nürnberg, D., Chiessi, C. M., Lenz, M. M. & Mulitza, S. Subsurface ocean warming preceded Heinrich events. Nat. Commun. 13, 4217 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X., Rial, J. A. & Reischmann, E. P. On the bipolar origin of Heinrich events. Geophys. Res. Lett. 41, 9080–9086 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Rhodes, R. H. et al. Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science 348, 1016–1019 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, H., Sinha, A., Wang, X., Cruz, F. W. & Edwards, R. L. The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Clim. Dyn. 39, 1045–1062 (2012).

    Article 

    Google Scholar
     

  • Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • He, C. et al. Abrupt Heinrich Stadial 1 cooling missing in Greenland oxygen isotopes. Sci. Adv. 7, eabh1007 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landais, A. et al. A review of the bipolar see-saw from synchronized and high resolution ice core water stable isotope records from Greenland and East Antarctica. Quat. Sci. Rev. 114, 18–32 (2015).

  • Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochim. Cosmochim. Acta 270, 409–430 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Buizert, C. et al. The WAIS Divide deep ice core WD2014 chronology—Part 1: methane synchronization (68–31 ka bp) and the gas age–ice age difference. Clim. Past 11, 153–173 (2015).

    Article 

    Google Scholar
     

  • Sigl, M. et al. The WAIS Divide deep ice core WD2014 chronology—Part 2: annual-layer counting (0–31 ka bp). Clim. Past 12, 769–786 (2016).

    Article 

    Google Scholar
     

  • Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29–46 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Svensson, A. et al. Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period. Clim. Past 16, 1565–1580 (2020).

    Article 

    Google Scholar
     

  • Buizert, C. The ice core gas age–ice age difference as a proxy for surface temperature. Geophys. Res. Lett. 48, e2021GL094241 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Buizert, C. et al. Antarctic surface temperature and elevation during the Last Glacial Maximum. Science 372, 1097–1101 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kindler, P. et al. Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Clim. Past 10, 887–902 (2014).

    Article 

    Google Scholar
     

  • Kobashi, T. et al. High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core. Geophys. Res. Lett. 38, 4–9 (2011).

    Article 

    Google Scholar
     

  • Menviel, L. C., Skinner, L. C., Tarasov, L. & Tzedakis, P. C. An ice–climate oscillatory framework for Dansgaard–Oeschger cycles. Nat. Rev. Earth Environ. 1, 677–693 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ziemen, F. A., Kapsch, M. L., Klockmann, M. & Mikolajewicz, U. Heinrich events show two-stage climate response in transient glacial simulations. Clim. Past 15, 153–168 (2019).

    Article 

    Google Scholar
     

  • Badgeley, J. A., Steig, E. J., Hakim, G. J. & Fudge, T. J. Greenland temperature and precipitation over the last 20 000 years using data assimilation. Clim. Past 16, 1325–1346 (2020).

    Article 

    Google Scholar
     

  • Bard, E., Rostek, F., Turon, J. L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289, 1321–1324 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedro, J. B. et al. Dansgaard–Oeschger and Heinrich event temperature anomalies in the North Atlantic set by sea ice, frontal position and thermocline structure. Quat. Sci. Rev. 289, 107599 (2022).

  • Böhm, E. et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 73–76 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mayewski, P. A. et al. Major features and forcing of high-latitude Northern Hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J. Geophys. Res. Ocean 102, 26345–26366 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauska, T. K., Marcott, S. A. & Brook, E. J. Abrupt changes in the global carbon cycle during the last glacial period. Nat. Geosci. 14, 91–96 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McConnell, J. R. et al. Synchronous volcanic eruptions and abrupt climate change ~17.7 ka plausibly linked by stratospheric ozone depletion. Proc. Natl Acad. Sci. USA 114, 10035–10040 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ceppi, P., Hwang, Y. T., Liu, X., Frierson, D. M. W. & Hartmann, D. L. The relationship between the ITCZ and the Southern Hemispheric eddy-driven jet. J. Geophys. Res. Atmos. 118, 5136–5146 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menviel, L. et al. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nat. Commun. 9, 2503 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menviel, L., England, M. H., Meissner, K. J., Mouchet, A. & Yu, J. Atlantic–Pacific seesaw and its role in outgassing CO2 during Heinrich events. Paleoceanography 29, 58–70 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Clement, A. C. & Cane, M. in Mechanisms of Global Climate Change at Millennial Time Scales Geophysical Monograph Series Vol. 112 (eds Clark, P. U. et al.) 363–371 (AGU, 1999).

  • Johnsen, S. J. et al. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. J. Geophys. Res. Ocean 102, 26397–26410 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Steig, E. J. et al. Continuous-flow analysis of δ17O, δ18O, and δD of H2O on an ice core from the South Pole. Front. Earth Sci. 9, 640292 (2021).

    Article 
    ADS 

    Google Scholar
     

  • McManus, J. F., Francois, R., Gherardl, J. M., Kelgwin, L. & Drown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. J. et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mudelsee, M. Ramp function regression: a tool for quantifying climate transitions. Comput. Geosci. 26, 293–307 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Mitchell, L. E., Brook, E. J., Sowers, T., McConnell, J. R. & Taylor, K. Multidecadal variability of atmospheric methane, 1000–1800 C.E. J. Geophys. Res. Biogeosci. 116, G02007 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Mitchell, L., Brook, E., Lee, J. E., Buizert, C. & Sowers, T. Constraints on the late Holocene anthropogenic contribution to the atmospheric methane budget. Science 342, 964–966 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sowers, T., Bender, M. & Raynaud, D. Elemental and isotopic composition of occluded O2 and N2 in polar ice. J. Geophys. Res. 94, 5137–5150 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Petrenko, V. V., Severinghaus, J. P., Brook, E. J., Reeh, N. & Schaefer, H. Gas records from the West Greenland ice margin covering the Last Glacial Termination: a horizontal ice core. Quat. Sci. Rev. 25, 865–875 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Severinghaus, J., Beaudette, R., Headly, M., Taylor, K. & Brook, E. Oxygen-18 of O2 records the impact of abrupt climate change on the terrestrial biosphere. Science 324, 1431–1435 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Severinghaus, J. P. & Brook, E. J. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286, 930–934 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grachev, A. M., Brook, E. J. & Severinghaus, J. P. Abrupt changes in atmospheric methane at the MIS 5b–5a transition. Geophys. Res. Lett. 34, L20703 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kobashi, T., Severinghaus, J. P. & Kawamura, K. Argon and nitrogen isotopes of trapped air in the GISP2 ice core during the Holocene epoch (0–11,500 B.P.): methodology and implications for gas loss processes. Geochim. Cosmochim. Acta 72, 4675–4686 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • EPICA Community Members One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195–198 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Epifanio, J. A. et al. The SP19 chronology for the South Pole ice core—Part 2: gas chronology, Δage, and smoothing of atmospheric records. Clim. Past 16, 2431–2444 (2020).

    Article 

    Google Scholar
     

  • Bender, M. et al. Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372, 663–666 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Severi, M. et al. Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching. Clim. Past 3, 367–374 (2007).

    Article 

    Google Scholar
     

  • Severi, M., Udisti, R., Becagli, S., Stenni, B. & Traversi, R. Volcanic synchronisation of the EPICA-DC and TALDICE ice cores for the last 42 kyr bp. Clim. Past 8, 509–517 (2012).

    Article 

    Google Scholar
     

  • Veres, D. et al. The Antarctic Ice Core Chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim. Past 9, 1733–1748 (2013).

    Article 

    Google Scholar
     

  • Bazin, L. et al. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Clim. Past 9, 1715–1731 (2013).

    Article 

    Google Scholar
     

  • Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, D06102 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Andersen, K. K. et al. The Greenland Ice Core Chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quat. Sci. Rev. 25, 3246–3257 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Svensson, A. et al. The Greenland Ice Core Chronology 2005, 15–42 ka. Part 2: comparison to other records. Quat. Sci. Rev. 25, 3258–3267 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Buizert, C. et al. Greenland temperature response to climate forcing during the last deglaciation. Science 345, 1177–1180 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Herron, B. M. M. & Langway, C. C. Firn densification: an empirical model. J. Glaciol. 25, 373–385 (1980).

  • Calonne, N. et al. Thermal conductivity of snow, firn, and porous ice from 3-D image-based computations. Geophys. Res. Lett. 46, 13079–13089 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Martinerie, P. et al. Air content paleo record in the Vostok ice core (Antarctica): a mixed record of climatic and glaciological parameters. J. Geophys. Res. 99, 10565–10576 (1994).

  • Blunier, T. & Schwander, J. Gas enclosure in ice: age difference and fractionation. In Physics of Ice Core Records, edited by: Hondoh, T., Hokkaido University Press, Sapporo, 307–326 (2000).

  • Rosen, J. L. et al. An ice core record of near-synchronous global climate changes at the Bølling transition. Nat. Geosci. 7, 459–463 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Orsi, A. J. Temperature Reconstruction at the West Antarctic Ice Sheet Divide, for the Last Millennium, from the Combination of Borehole Temperature and Inert Gas Isotope Measurements. DPhil dissertation, Univ. California, San Diego (2013); https://escholarship.org/uc/item/02g3c5fq.

  • Kobashi, T. et al. Persistent multi-decadal Greenland temperature fluctuation through the last millennium. Climatic Change 100, 733–756 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Buizert, C. et al. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661–665 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Mudelsee, M. Break function regression: a tool for quantifying trend changes in climate time series. Eur. Phys. J. Spec. Top. 174, 49–63 (2009).

    Article 

    Google Scholar
     

  • Lisiecki, L. E. & Stern, J. V. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography 31, 1368–1394 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Dahl-Jensen, D. et al. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Erhardt, T. et al. Decadal-scale progression of the onset of Dansgaard–Oeschger warming events. Clim. Past 15, 811–825 (2019).

    Article 

    Google Scholar
     

  • Cuffey, K. M. & Clow, G. D. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J. Geophys. Res. Ocean. 102, 26383–26396 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Buizert, C. et al. Greenland-wide seasonal temperatures during the last deglaciation. Geophys. Res. Lett. 45, 1905–1914 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science 325, 310–314 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Obase, T. & Abe-Ouchi, A. Abrupt Bølling–Allerød warming simulated under gradual forcing of the last deglaciation. Geophys. Res. Lett. 46, 11397–11405 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Source link