May 5, 2024
Capillary forces generated by biomolecular condensates – Nature

Capillary forces generated by biomolecular condensates – Nature

  • Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Seydoux, G. The P granules of C. elegans: a genetic model for the study of RNA–protein condensates. J. Mol. Biol. 430, 4702–4710 (2018).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016). Nucleoli are multiphase liquid condensates whose core–shell organization is governed by relative interfacial tensions.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Frottin, F. et al. The nucleolus functions as a phase-separated protein quality control compartment. Science 365, 342–347 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R. & Parker, R. Distinct stages in stress granule assembly and disassembly. eLife 5, e18413 (2016).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Freeman Rosenzweig, E. S. et al. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell 171, 148–162.e19 (2017).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Kilic, S. et al. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J. 38, e101379 (2019).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Zarzar, L. D. et al. Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518, 520–524 (2015).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Marthelot, J., Strong, E. F., Reis, P. M. & Brun, P.-T. Designing soft materials with interfacial instabilities in liquid films. Nat. Commun. 9, 4477 (2018).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Duprat, C., Aristoff, J. M. & Stone, H. A. Dynamics of elastocapillary rise. J. Fluid Mech. 679, 641–654 (2011).

    ADS 
    MATH 
    Article 

    Google Scholar
     

  • Roman, B. & Bico, J. Elasto-capillarity: deforming an elastic structure with a liquid droplet. J. Phys. Condens. Matter 22, 493101 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Steinberg, M. S. Adhesion in development: an historical overview. Dev. Biol. 180, 377–388 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hayashi, T. & Carthew, R. W. Surface mechanics mediate pattern formation in the developing retina. Nature 431, 647–652 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

  • Aarts, D. G. A. L., Schmidt, M. & Lekkerkerker, H. N. W. Direct visual observation of thermal capillary waves. Science 304, 847–850 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dill, K. & Bromberg, S. Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience (Garland Science, 2010).

  • Mao, S., Kuldinow, D., Haataja, M. P. & Košmrlj, A. Phase behavior and morphology of multicomponent liquid mixtures. Soft Matter 15, 1297–1311 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cahn, J. W. & Hilliard, J. E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Berry, J., Brangwynne, C. P. & Haataja, M. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys. 81, 046601 (2018).

    ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Lin, Y., Protter, D. S. W., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. RNA controls polyQ protein phase transitions. Mol. Cell 60, 220–230 (2015).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Putnam, A., Cassani, M., Smith, J. & Seydoux, G. A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos. Nat. Struct. Mol. Biol. 26, 220–226 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Eggers, J., Lister, J. R. & Stone, H. A. Coalescence of liquid drops. J. Fluid Mech. 401, 293–310 (1999).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Rosowski, K. A. et al. Elastic ripening and inhibition of liquid–liquid phase separation. Nat. Phys. 16, 422–425 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324.e28 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Fei, J. et al. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J. Cell Sci. 130, 4180–4192 (2017).

    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kaur, T. et al. Sequence-encoded and composition-dependent protein–RNA interactions control multiphasic condensate morphologies. Nat. Commun. 12, 872 (2021). A ternary system of protein and RNA is used to show that the wetting morphologies of the resulting biphasic condensates depend strongly on component stoichiometry and intermolecular interaction hierarchy.

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Boeynaems, S. et al. Spontaneous driving forces give rise to protein–RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Simon, J. R., Carroll, N. J., Rubinstein, M., Chilkoti, A. & López, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Gall, J. G., Bellini, M., Wu, Z. & Murphy, C. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol. Biol. Cell 10, 4385–4402 (1999).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Pena, E., Berciano, M. T., Fernandez, R., Ojeda, J. L. & Lafarga, M. Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J. Comp. Neurol. 430, 250–263 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Caragine, C. M., Haley, S. C. & Zidovska, A. Surface fluctuations and coalescence of nucleolar droplets in the human cell nucleus. Phys. Rev. Lett. 121, 148101 (2018).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Ijavi, M. et al. Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method. Soft Matter 17, 1655–1662 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jawerth, L. M. et al. Salt-dependent rheology and surface tension of protein condensates using optical traps. Phys. Rev. Lett. 121, 258101 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang, H., Kelley, F. M., Milovanovic, D., Schuster, B. S. & Shi, Z. Surface tension and viscosity of protein condensates quantified by micropipette aspiration. Biophys. Rep. 1, 100011 (2021).

    CAS 

    Google Scholar
     

  • Bergeron-Sandoval, L.-P. et al. Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling. Proc. Natl Acad. Sci. USA 118, e2113789118 (2021).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171.e14 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bracha, D. et al. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175, 1467–1480.e13 (2018).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Dine, E., Gil, A. A., Uribe, G., Brangwynne, C. P. & Toettcher, J. E. Protein phase separation provides long-term memory of transient spatial stimuli. Cell Syst. 6, 655–663.e5 (2018).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491.e13 (2018). Nuclear condensates exert capillary forces on targeted genomic loci to pull them together while excluding the rest of the neighbouring genome.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Narayanan, A. et al. A first order phase transition mechanism underlies protein aggregation in mammalian cells. eLife 8, e39695 (2019).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Shimobayashi, S., Ronceray, P., Sanders, D. W., Haataja, M. & Brangwynne, C. P. Nucleation landscape of biomolecular condensates. Nature 599, 503–506 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kashchiev, D. Nucleation (Elsevier, 2000).

  • Wiegand, T. & Hyman, A. A. Drops and fibers—how biomolecular condensates and cytoskeletal filaments influence each other. Emerg. Top. Life Sci. 4, 247–261 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Feric, M. & Brangwynne, C. P. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat. Cell Biol. 15, 1253–1259 (2013).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Böddeker, T. J. et al. Non-specific adhesive forces between filaments and membraneless organelles. Nat. Phys. 18, 571–578 (2022). Tubulin subunits and microtubules adhere to condensate interfaces in a manner consistent with a Pickering model that accounts for the finite interfacial thickness.

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Kumar, N., Zhang, R., de Pablo, J. J. & Gardel, M. L. Tunable structure and dynamics of active liquid crystals. Sci. Adv. 4, eaat7779 (2018).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Weirich, K. L. et al. Liquid behavior of cross-linked actin bundles. Proc. Natl Acad. Sci. USA 114, 2131–2136 (2017).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Zwicker, D., Seyboldt, R., Weber, C. A., Hyman, A. A. & Jülicher, F. Growth and division of active droplets provides a model for protocells. Nat. Phys. 13, 408–413 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Weirich, K. L., Dasbiswas, K., Witten, T. A., Vaikuntanathan, S. & Gardel, M. L. Self-organizing motors divide active liquid droplets. Proc. Natl Acad. Sci. USA 116, 11125–11130 (2019).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Jiang, H. et al. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163, 108–122 (2015).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • King, M. R. & Petry, S. Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation. Nat. Commun. 11, 270 (2020).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Hernández-Vega, A. et al. Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. Cell Rep. 20, 2304–2312 (2017). Microtubules nucleate from tau condensates, resulting in a wetted network of microtubule bundles, the wettability of which can be tuned by heparin.

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siahaan, V. et al. Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes. Nat. Cell Biol. 21, 1086–1092 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jijumon, A. S. et al. Lysate-based pipeline to characterize microtubule-associated proteins uncovers unique microtubule behaviours. Nat. Cell Biol. 24, 253–267 (2022).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Setru, S. U. et al. A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches. Nat. Phys. 17, 493–498 (2021). A Rayleigh–Plateau instability with condensed TPX2 on microtubules results in droplets that serve as reaction hubs to form microtubule branches.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Petry, S., Groen, A. C., Ishihara, K., Mitchison, T. J. & Vale, R. D. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152, 768–777 (2013).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Valentine, M. T., Fordyce, P. M., Krzysiak, T. C., Gilbert, S. P. & Block, S. M. Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nat. Cell Biol. 8, 470–476 (2006).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Bäuerlein, F. J. B. et al. In situ architecture and cellular interactions of polyQ inclusions. Cell 171, 179–187.e10 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisher, R. S., Jimenez, R. M., Soto, E., Kalev, D. & Elbaum-Garfinkle, S. An apparent core/shell architecture of polyQ aggregates in the aging Caenorhabditis elegans neuron. Protein Sci. 30, 1482–1486 (2021).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Yu, H. et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 371, eabb4309 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Updike, D. L., Hachey, S. J., Kreher, J. & Strome, S. P granules extend the nuclear pore complex environment in the C. elegans germ line. J. Cell Biol. 192, 939–948 (2011).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Yuan, F. et al. Membrane bending by protein phase separation. Proc. Natl Acad. Sci. USA 118, e2017435118 (2021).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Kusumaatmaja, H. & Lipowsky, R. Droplet-induced budding transitions of membranes. Soft Matter 7, 6914–6919 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Agudo-Canalejo, J. et al. Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature 591, 142–146 (2021). Autophagosomes sequester p62-rich condensates by wrapping around them via a wetting interaction; successful autophagy depends on condensate size, interfacial tension and membrane stiffness.

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kusumaatmaja, H. et al. Wetting of phase-separated droplets on plant vacuole membranes leads to a competition between tonoplast budding and nanotube formation. Proc. Natl Acad. Sci. USA 118, e2024109118 (2021). Wetting of phase-separated droplets on plant vacuolar membranes can lead to membrane budding or the formation of membrane nanotubes depending on the contact angle and the membrane spontaneous curvature.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Feeney, M., Kittelmann, M., Menassa, R., Hawes, C. & Frigerio, L. Protein storage vacuoles originate from remodeled preexisting vacuoles in Arabidopsis thaliana. Plant Physiol. 177, 241–254 (2018).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Zheng, H. & Staehelin, L. A. Protein storage vacuoles are transformed into lytic vacuoles in root meristematic cells of germinating seedlings by multiple, cell type-specific mechanisms. Plant Physiol. 155, 2023–2035 (2011).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Dimova, R. & Lipowsky, R. Lipid membranes in contact with aqueous phases of polymer solutions. Soft Matter 8, 6409–6415 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wei, M.-T. et al. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187–1196 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Tatavosian, R. et al. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J. Biol. Chem. 294, 1451–1463 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Morin, J. A. et al. Sequence-dependent surface condensation of a pioneer transcription factor on DNA. Nat. Phys. 18, 271–276 (2022).

  • Quail, T. et al. Force generation by protein–DNA co-condensation. Nat. Phys. 17, 1007–1012 (2021). The condensed transcription factor FoxA1 wets DNA and regulates its tension by allowing slack DNA to spool into FoxA1 droplets.

    CAS 
    Article 

    Google Scholar
     

  • Elettro, H., Neukirch, S., Vollrath, F. & Antkowiak, A. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties. Proc. Natl Acad. Sci. USA 113, 6143–6147 (2016).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Keenen, M. M. et al. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. eLife 10, e64563 (2021).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Gao, Y., Han, M., Shang, S., Wang, H. & Qi, L. S. Interrogation of the dynamic properties of higher-order heterochromatin using CRISPR/dCas9. Mol. Cell 81, 4287–4299.e5 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175, 1405–1417.e14 (2018).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Jack, A. et al. Compartmentalization of telomeres through DNA-scaffolded phase separation. Dev. Cell 57, 277–290.e9 (2022).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Lee, D. S. W., Wingreen, N. S. & Brangwynne, C. P. Chromatin mechanics dictates subdiffusion and coarsening dynamics of embedded condensates. Nat. Phys. 17, 531–538 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ronceray, P., Sheng, M., Košmrlj, A. & Haataja, M. P. Liquid demixing in elastic networks: cavitation, permeation, or size selection?. EPL 137, 67001 (2022).

    ADS 
    Article 

    Google Scholar
     

  • Zhang, Y., Lee, D. S. W., Meir, Y., Brangwynne, C. P. & Wingreen, N. S. Mechanical frustration of phase separation in the cell nucleus by chromatin. Phys. Rev. Lett. 126, 258102 (2021).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Snead, W. T. et al. Membrane surfaces regulate assembly of ribonucleoprotein condensates. Nat. Cell Biol. 24, 461–470 (2022).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cochard, A. et al. RNA at the surface of phase-separated condensates impacts their size and number. Biophys. J.121, 1675–1690 (2022).

  • Boisvert, F. M., Hendzel, M. J. & Bazett-Jones, D. P. Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J. Cell Biol. 148, 283–292 (2000).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Tauber, D. et al. Modulation of RNA condensation by the DEAD-box protein eIF4A. Cell 180, 411–426.e16 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Hilbert, L. et al. Transcription organizes euchromatin via microphase separation. Nat. Commun. 12, 1360 (2021).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Plys, A. J. et al. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Falk, M. et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570, 395–399 (2019).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • De, S., Malik, S., Ghosh, A., Saha, R. & Saha, B. A review on natural surfactants. RSC Adv. 5, 65757–65767 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cuylen, S. et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535, 308–312 (2016).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Cuylen-Haering, S. et al. Chromosome clustering by Ki-67 excludes cytoplasm during nuclear assembly. Nature 587, 285–290 (2020).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Stenström, L. et al. Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol. Syst. Biol. 16, e9469 (2020).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Kelley, F. M., Favetta, B., Regy, R. M., Mittal, J. & Schuster, B. S. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants. Proc. Natl Acad. Sci. USA 118, e2109967118 (2021). Amphiphilic surfactant-like proteins regulate the size and multiphasic wetting morphologies of condensates in a concentration-dependent and sequence-dependent manner.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Sanchez-Burgos, I., Joseph, J. A., Collepardo-Guevara, R. & Espinosa, J. R. Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients. Sci. Rep. 11, 15241 (2021).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Subramaniam, A. B., Abkarian, M., Mahadevan, L. & Stone, H. A. Colloid science: non-spherical bubbles. Nature 438, 930 (2005).

    ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abkarian, M. et al. Dissolution arrest and stability of particle-covered bubbles. Phys. Rev. Lett. 99, 188301 (2007).

    ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dinsmore, A. D. et al. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009 (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Binks, B. P. & Clint, J. H. Solid wettability from surface energy components: relevance to Pickering emulsions. Langmuir 18, 1270–1273 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Folkmann, A. W., Putnam, A., Lee, C. F. & Putnam, G. Pickering stabilization of a dynamic intracellular emulsion. Science 373, 1218–1224 (2021). MEG-3 assemblies adhere to the interface of P granules and slow their coarsening through a Pickering effect, thereby stabilizing the emulsion of P granules.

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Würger, A. Curvature-induced capillary interaction of spherical particles at a liquid interface. Phys. Rev. E 74, 041402 (2006).

    ADS 
    MathSciNet 
    Article 
    CAS 

    Google Scholar
     

  • Cavallaro, M. Jr, Botto, L., Lewandowski, E. P., Wang, M. & Stebe, K. J. Curvature-driven capillary migration and assembly of rod-like particles. Proc. Natl Acad. Sci. USA 108, 20923–20928 (2011).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Boruvka, L. & Neumann, A. W. Generalization of the classical theory of capillarity. J. Chem. Phys. 66, 5464–5476 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Source link