May 29, 2024

Cardiopharyngeal deconstruction and ancestral tunicate sessility – Nature

  • 1.

    Satoh, N. in Chordate Origins and Evolution (ed. Satoh, N.) 17–30 (Academic, 2016).

  • 2.

    Diogo, R. et al. A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 520, 466–473 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Razy-Krajka, F. & Stolfi, A. Regulation and evolution of muscle development in tunicates. Evodevo 10, 1–34 (2019).

    CAS 

    Google Scholar
     

  • 4.

    Stolfi, A. et al. Early chordate origins of the vertebrate second heart field. Science 565, 565–569 (2010).

    ADS 

    Google Scholar
     

  • 5.

    Mikhaleva, Y., Skinnes, R., Sumic, S., Thompson, E. M. & Chourrout, D. Development of the house secreting epithelium, a major innovation of tunicate larvaceans, involves multiple homeodomain transcription factors. Dev. Biol. 443, 117–126 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Garstang, W. The morphology of the Tunicata, and its bearings on the phylogeny of the Chrodata. Quar. J. Micr. Sci. 72, 51–186 (1928).


    Google Scholar
     

  • 7.

    Bourlat, S. J. et al. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444, 85–88 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Delsuc, F., Brinkmann, H., Chourrout, D. & Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965–968 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Swalla, B. J., Cameron, C. B., Corley, L. S. & Garey, J. R. Urochordates are monophyletic within the deuterostomes. Syst. Biol. 49, 52–64 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Delsuc, F. et al. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 16, 39 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Kocot, K. M., Tassia, M. G., Halanych, K. M. & Swalla, B. J. Phylogenomics offers resolution of major tunicate relationships. Mol. Phylogenet. Evol. 121, 166–173 (2018).

    PubMed 

    Google Scholar
     

  • 12.

    Braun, K., Leubner, F. & Stach, T. Phylogenetic analysis of phenotypic characters of Tunicata supports basal Appendicularia and monophyletic Ascidiacea. Cladistics 36, 259–300 (2020).

    PubMed 

    Google Scholar
     

  • 13.

    Stach, T. Ontogeny of the appendicularian Oikopleura dioica (Tunicata, Chordata) reveals characters similar to ascidian larvae with sessile adults. Zoomorphology 126, 203–214 (2007).


    Google Scholar
     

  • 14.

    Nishida, H., Ohno, N., Caicci, F. & Manni, L. 3D reconstruction of structures of hatched larva and young juvenile of the larvacean Oikopleura dioica using SBF-SEM. Sci. Rep. 11, 1–14 (2021).


    Google Scholar
     

  • 15.

    Almazán, A., Ferrández-Roldán, A., Albalat, R. & Cañestro, C. Developmental atlas of appendicularian Oikopleura dioica actins provides new insights into the evolution of the notochord and the cardio-paraxial muscle in chordates. Dev. Biol. 448, 260–270 (2019).

    PubMed 

    Google Scholar
     

  • 16.

    Stach, T., Winter, J., Bouquet, J.-M. M., Chourrout, D. & Schnabel, R. Embryology of a planktonic tunicate reveals traces of sessility. Proc. Natl Acad. Sci. USA 105, 7229–7234 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Davidson, B. Ciona intestinalis as a model for cardiac development. Semin. Cell Dev. Biol. 18, 16–26 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Christiaen, L., Stolfi, A. & Levine, M. BMP signaling coordinates gene expression and cell migration during precardiac mesoderm development. Dev. Biol. 340, 179–187 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Wang, W. et al. A single-cell transcriptional roadmap for cardiopharyngeal fate diversification. Nat. Cell Biol. 21, 674–686 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Racioppi, C., Wiechecki, K. A. & Christiaen, L. Combinatorial chromatin dynamics foster accurate cardiopharyngeal fate choices. eLife 8, 1–33 (2019).


    Google Scholar
     

  • 21.

    Lescroart, F. et al. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat. Cell Biol. 16, 829–840 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Satou, Y., Imai, K. S. & Satoh, N. The ascidian Mesp gene specifies heart precursor cells. Development 131, 2533–2541 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Davidson, B., Shi, W., Beh, J., Christiaen, L. & Levine, M. FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev. 20, 2728–2738 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Bernadskaya, Y. Y., Brahmbhatt, S., Gline, S. E., Wang, W. & Christiaen, L. Discoidin-domain receptor coordinates cell-matrix adhesion and collective polarity in migratory cardiopharyngeal progenitors. Nat. Commun. 10, 57 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Shi, Y., Katsev, S., Cai, C. & Evans, S. BMP signaling is required for heart formation in vertebrates. Dev. Biol. 224, 226–237 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Davidson, B., Shi, W. & Levine, M. Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development 132, 4811–4818 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Schachterle, W., Rojas, A., Xu, S.-M. & Black, B. L. ETS-dependent regulation of a distal Gata4 cardiac enhancer. Dev. Biol. 361, 439–449 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Wang, W., Razy-Krajka, F., Siu, E., Ketcham, A. & Christiaen, L. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol. 11, e1001725 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Delsman, H. C. Contributions on the ontogeny of Oikopleura dioica. Verch. Rijksinst. Onderz. Zee 3, 1–24 (1910).


    Google Scholar
     

  • 30.

    Fujii, S., Nishio, T. & Nishida, H. Cleavage pattern, gastrulation, and neurulation in the appendicularian, Oikopleura dioica. Dev. Genes Evol. 218, 69–79 (2008).

    PubMed 

    Google Scholar
     

  • 31.

    Hogan, B. Deconstructing the genesis of animal form. Development 131, 2515–2520 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Fenaux, R. in The Biology of Pelagic Tunicates (ed. Bone, Q.) 25–34 (Oxford Univ. Press, 1998).

  • 33.

    Martí-Solans, J. et al. Oikopleura dioica culturing made easy: a low-cost facility for an emerging animal model in EvoDevo. Genesis 53, 183–193 (2015).

    PubMed 

    Google Scholar
     

  • 34.

    Brozovic, M. et al. ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res. 46, D718–D725 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Naville, M. et al. Massive changes of genome size driven by expansions of non-autonomous transposable elements. Curr. Biol. 29, 1161–1168 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Conklin, E. G. The organization and cell lineage of the ascidian egg. J. Acad. Nat. Sci. Phila. 13, 1–119 (1905).


    Google Scholar
     

  • 39.

    Martí-Solans, J. et al. Coelimination and survival in gene network evolution: dismantling the RA-signaling in a chordate. Mol. Biol. Evol. 33, 2401–2416 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Bassham, S. & Postlethwait, J. Brachyury (T) expression in embryos of a larvacean urochordate, Oikopleura dioica, and the ancestral role of T. Dev. Biol. 220, 322–332 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Cañestro, C. & Postlethwait, J. H. Development of a chordate anterior–posterior axis without classical retinoic acid signaling. Dev. Biol. 305, 522–538 (2007).

    PubMed 

    Google Scholar
     

  • 42.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Torres-Águila, N. P. et al. Diatom bloom-derived biotoxins cause aberrant development and gene expression in the appendicularian chordate Oikopleura dioica. Commun. Biol. 1, 121 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link