May 4, 2024
Chemically defined cytokine-free expansion of human haematopoietic stem cells – Nature

Chemically defined cytokine-free expansion of human haematopoietic stem cells – Nature

  • Copelan, E. A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Cohen, S. et al. Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1-2 safety and feasibility study. Lancet Haematol. 7, e134–e145 (2020).

    Article 

    Google Scholar
     

  • Pineault, N. & Abu-Khader, A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp. Hematol. 43, 498–513 (2015).

    Article 

    Google Scholar
     

  • Wilkinson, A. C. & Nakauchi, H. Stabilizing hematopoietic stem cells in vitro. Current Opin. Genet. Dev. 64, 1–5 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gluckman, E. et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N. Engl. J. Med. 321, 1174–1178 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Wilkinson, A. C., Igarashi, K. J. & Nakauchi, H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat. Rev. Genet. 21, 541–554 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Boitano, A. E. et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345–1348 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fares, I. et al. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345, 1509–1512 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wagner, J. E. Jr. et al. Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell 18, 144–155 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bai, T. et al. Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Nat. Med. 25, 1566–1575 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Grey, W. et al. Activation of the receptor tyrosine kinase RET improves long-term hematopoietic stem cell outgrowth and potency. Blood 136, 2535–2547 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J., Nguyen-McCarty, M., Hexner, E. O., Danet-Desnoyers, G. & Klein, P. S. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat. Med. 18, 1778–1785 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wilkinson, A. C. et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature 571, 117–121 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wilkinson, A. C., Ishida, R., Nakauchi, H. & Yamazaki, S. Long-term ex vivo expansion of mouse hematopoietic stem cells. Nat. Protoc. 15, 628–648 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ieyasu, A. et al. An all-recombinant protein-based culture system specifically identifies hematopoietic stem cell maintenance factors. Stem Cell Rep. 8, 500–508 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Seita, J. et al. Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction. Proc. Natl Acad. Sci. USA 104, 2349–2354 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, H. J. et al. Cytokine-induced megakaryocytic differentiation is regulated by genome-wide loss of a uSTAT transcriptional program. EMBO J. 35, 580–594 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yamazaki, S. et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J. 25, 3515–3523 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Tadokoro, Y. et al. Spred1 safeguards hematopoietic homeostasis against diet-induced systemic stress. Cell Stem Cell 22, 713–725 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lechman, E. R. et al. Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell 11, 799–811 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sakurai, M., Takemoto, H., Mori, T., Okamoto, S. & Yamazaki, S. In vivo expansion of functional human hematopoietic stem progenitor cells by butyzamide. Int. J. Hematol. 111, 739–741 (2020).

    Article 

    Google Scholar
     

  • Nishimura, T. et al. Use of polyvinyl alcohol for chimeric antigen receptor T-cell expansion. Exp. Hematol. 80, 16–20 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ito, M. et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100, 3175–3182 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Linn, M. et al. Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. Eur. J. Pharm. Sci. 45, 336–343 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Jin, X., Zhou, B., Xue, L. & San, W. Soluplus(®) micelles as a potential drug delivery system for reversal of resistant tumor. Biomed. Pharmacother. 69, 388–395 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sudo, K., Yamazaki, S., Wilkinson, A. C., Nakauchi, H. & Nakamura, Y. Polyvinyl alcohol hydrolysis rate and molecular weight influence human and murine HSC activity ex vivo. Stem Cell Res. 56, 102531 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ito, R. et al. Establishment of a human allergy model using human IL-3/GM-CSF-transgenic NOG mice. J. Immunol. 191, 2890–2899 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Fares, I. et al. EPCR expression marks UM171-expanded CD34+ cord blood stem cells. Blood 129, 3344–3351 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lehnertz, B. et al. HLF expression defines the human hematopoietic stem cell state. Blood 138, 2642–2654 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Aguilo, F. et al. Prdm16 is a physiologic regulator of hematopoietic stem cells. Blood 117, 5057–5066 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Che, J. L. C. et al. Identification and characterization of in vitro expanded hematopoietic stem cells. EMBO Rep. 23, e55502 (2022).

    Article 
    CAS 

    Google Scholar
     

  • García-Prat, L. et al. TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 28, 1838–1850 (2021).

    Article 

    Google Scholar
     

  • Liang, R. et al. Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency. Cell Stem Cell 26, 359–376 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nocka, K. et al. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J. 9, 1805–1813 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Ema, H. et al. Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat. Protoc. 1, 2979–2987 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Nogami, W. et al. The effect of a novel, small non-peptidyl molecule butyzamide on human thrombopoietin receptor and megakaryopoiesis. Haematologica 93, 1495–1504 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Sakurai, M., Ishitsuka, K. & Yamazaki, S. Cytokine-free ex vivo expansion of human hematopoietic stem cells. Protoc. Exch. (in the press).

  • Kuchimaru, T. et al. A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries. Nat. Commun. 9, 2981 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS 

    Google Scholar
     

  • Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20–e31 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Source link