May 5, 2024
Climate warming increases extreme daily wildfire growth risk in California – Nature

Climate warming increases extreme daily wildfire growth risk in California – Nature

  • Coop, J. D. et al. Extreme fire spread events and area burned under recent and future climate in the western USA. Glob. Ecol. Biogeogr. 31, 1949–1959 (2022).

    Article 

    Google Scholar
     

  • Juang, C. S. et al. Rapid growth of large forest fires drives the exponential response of annual forest-fire area to aridity in the western United States. Geophys. Res. Lett. 49, e2021GL097131 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keeley, J. E. & Syphard, A. D. Large California wildfires: 2020 fires in historical context. Fire Ecol. 17, 22 (2021).

    Article 

    Google Scholar
     

  • Wang, D. et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 4, 252–260 (2021).

    Article 

    Google Scholar
     

  • Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).

    Article 

    Google Scholar
     

  • Starrs, C. F., Butsic, V., Stephens, C. & Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 13, 034025 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.), pp. 1513–1766 (Cambridge Univ. Press, 2021).

  • Mandel, J. et al. Recent advances and applications of WRF–SFIRE. Nat. Hazards Earth Syst. Sci. 14, 2829–2845 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Rabin, S. S. et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Goss, M. et al. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 15, 094016 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Williams, A. P. et al. Observed impacts of Anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seager, R. et al. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of Anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, S. S.-C., Qian, Y., Leung, L. R. & Zhang, Y. Identifying key drivers of wildfires in the contiguous US using machine learning and game theory interpretation. Earths Future 9, e2020EF001910 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y., Jin, Y., Schwartz, M. W. & Thorne, J. H. Intensified burn severity in California’s northern coastal mountains by drier climatic condition. Environ. Res. Lett. 15, 104033 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Elia, M. et al. Estimating the probability of wildfire occurrence in Mediterranean landscapes using Artificial Neural Networks. Environ. Impact Assess. Rev. 85, 106474 (2020).

    Article 

    Google Scholar
     

  • Satir, O., Berberoglu, S. & Donmez, C. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomat. Nat. Hazards Risk 7, 1645–1658 (2016).

    Article 

    Google Scholar
     

  • Werth, P. A. et. al. Synthesis of Knowledge of Extreme Fire Behavior: Volume 2 for Fire Behavior Specialists, Researchers, and Meteorologists. General Technical Report PNW-GTR-891 (U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2016).

  • Schär, C., Frei, C., Lüthi, D. & Davies, H. C. Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett. 23, 669–672 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Patricola, C. M. & Wehner, M. F. Anthropogenic influences on major tropical cyclone events. Nature 563, 339–346 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Otto, F. E. L. Attribution of weather and climate events. Annu. Rev. Environ. Resour. 42, 627–646 (2017).

    Article 

    Google Scholar
     

  • French, N. H. F., Kasischke, E. S. & Williams, D. G. Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest. J. Geophys. Res. 108, FFR 7-1–FFR 7-11 (2003).


    Google Scholar
     

  • Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. J. Future area burned in Canada. Clim. Change 72, 1–16 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Conard, S. G. et al. Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim. Change 55, 197–211 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Potter, B. E. & McEvoy, D. Weather factors associated with extremely large fires and fire growth days. Earth Interact. 25, 160–176 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gutierrez, A. A. et al. Wildfire response to changing daily temperature extremes in California’s Sierra Nevada. Sci. Adv. 7, eabe6417 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philip, S. et al. A protocol for probabilistic extreme event attribution analyses.Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 177–203 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Stocker, T. F.), pp. 857–952 (Cambridge Univ. Press, 2013).

  • Duane, A., Castellnou, M. & Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165, 43 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Woollings, T. et al. Blocking and its response to climate change. Current Clim. Change Rep. 4, 287–300 (2018).

    Article 

    Google Scholar
     

  • Swain, D. L. A shorter, sharper rainy season amplifies California wildfire risk. Geophys. Res. Lett. 48, e2021GL092843 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E. & Hall, A. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proc. Natl Acad. Sci. 118, e2111875118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephens, S. L. et al. Drought, tree mortality, and wildfire in forests adapted to frequent fire. BioScience 68, 77–88 (2018).

    Article 

    Google Scholar
     

  • Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150178 (2016).

    Article 

    Google Scholar
     

  • Ma, W. et al. Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model. Biogeosciences 18, 4005–4020 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Source link