May 4, 2024
Coherent surface plasmon polariton amplification via free-electron pumping – Nature

Coherent surface plasmon polariton amplification via free-electron pumping – Nature

  • Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Torma, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, L. J., Kaminer, I., Ilic, O., Joannopoulos, J. D. & Soljačić, M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photon. 10, 46–52 (2015).

    ADS 

    Google Scholar
     

  • Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljacic, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pizzi, A. et al. Graphene metamaterials for intense, tunable, and compact extreme ultraviolet and X-ray sources. Adv. Sci. 7, 1901609 (2020).

    CAS 

    Google Scholar
     

  • Rivera, N. & Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020).


    Google Scholar
     

  • Berini, P. & De Leon, I. Surface plasmon-polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Hu, H. et al. Surface Dyakonov–Cherenkov radiation. eLight 2, 2 (2022).


    Google Scholar
     

  • Dahan, R. et al. Imprinting the quantum statistics of photons on free electrons. Science 373, eabj7128 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, S. T., Lin, M. & Zewail, A. H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12, 123028 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Kent, A. J. 11th International Conference on Phonon Scattering on Phonon Scattering in Condensed Matter (Phonons 2004), St. Petersburg, Russia, 25–30 July 2004. Phys. Status Solidi B 241, 2651–2654 (2005).

  • Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, X. et al. Plasmon-enhanced terahertz photodetection in graphene. Nano Lett. 15, 4295–4302 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo, M. & Park, H.-R. Terahertz biochemical molecule-specific sensors. Adv. Opt. Mater. 8, 1900662 (2020).

    CAS 

    Google Scholar
     

  • Deng, X., Li, L., Enomoto, M. & Kawano, Y. Continuously frequency-tuneable plasmonic structures for terahertz bio-sensing and spectroscopy. Sci. Rep. 9, 3498 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahan, R. et al. Resonant phase-matching between a light wave and a free-electron wavefunction. Nat. Phys. 16, 1123–1131 (2020).

    CAS 

    Google Scholar
     

  • Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2017).


    Google Scholar
     

  • Kozak, M., Schonenberger, N. & Hommelhoff, P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120, 103203 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, C. et al. Direct mapping of attosecond electron dynamics. Nat. Photon. 15, 216–221 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    CAS 

    Google Scholar
     

  • Zhang, X. et al. Terahertz surface plasmonic waves: a review. Adv. Photon. 2, 014001 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Urata, J. et al. Superradiant Smith–Purcell emission. Phys. Rev. Lett. 80, 516–519 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Avetissian, H. K., Avchyan, B. R., Matevosyan, H. H. & Mkrtchian, G. F. Free-electron nanolaser based on graphene plasmons. Laser Phys. 31, 055801 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Zheng, Z., Kanda, N., Konishi, K. & Kuwata-Gonokami, M. Efficient coupling of propagating broadband terahertz radial beams to metal wires. Opt. Express 21, 10642–10650 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Tian, Y. et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation. Nat. Photon. 11, 242–246 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Zeng, Y. et al. Guiding and emission of milijoule single-cycle THz pulse from laser-driven wire-like targets. Opt. Express 28, 15258–15267 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K. L. & Mittleman, D. M. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K. & Mittleman, D. M. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range. Phys. Rev. Lett. 96, 157401 (2006).

    ADS 
    PubMed 

    Google Scholar
     

  • Nakajima, H., Tokita, S., Inoue, S., Hashida, M. & Sakabe, S. Divergence-free transport of laser-produced fast electrons along a meter-long wire target. Phys. Rev. Lett. 110, 155001 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Tian, Y. et al. Electron emission at locked phases from the laser-driven surface plasma wave. Phys. Rev. Lett. 109, 115002 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • Bocoum, M. et al. Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors. Phys. Rev. Lett. 116, 185001 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Malka, G. & Miquel, J. L. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys. Rev. Lett. 77, 75–78 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Z. P. & Zhang, X. C. Electro-optic measurement of THz field pulses with a chirped optical beam. Appl. Phys. Lett. 72, 1945–1947 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Sarkisov, G. S. et al. Fountain effect of laser-driven relativistic electrons inside a solid dielectric. Appl. Phys. Lett. 99, 131501 (2011).

    ADS 

    Google Scholar
     

  • Systemes, D. CST Studio Suite 2020 https://www.3ds.com/products-services/simulia/products/cst-studio-suite/ (2020).

  • Tokita, S. et al. Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses. Phys. Rev. Lett. 106, 255001 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • Feng, C. Theoretical and Experimental Studies on Novel High-Gain Seeded Free-Electron Laser Schemes (Springer, 2015).

  • Schlauderer, S. et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature 569, 383–387 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, F., Fujita, N. & Sato, F. In Optical Components and Materials XVI 189–195 (SPIE, 2019).

  • Teramoto, K. et al. Half-cycle terahertz surface waves with MV/cm field strengths generated on metal wires. Appl. Phys. Lett. 113, 051101 (2018).

    ADS 

    Google Scholar
     

  • Smith, G. S. On the interpretation for radiation from simple current distributions. IEEE Antennas Propag. Mag. 40, 39–44 (1998).


    Google Scholar
     

  • Sommerfeld, A. Electrodynamics: Lectures on Theoretical Physics Vol. 3 (Academic Press, 2013).

  • Goubau, G. Surface waves and their application to transmission lines. J. Appl. Phys. 21, 1119–1128 (1950).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • King, M. & Wiltse, J. Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths. IRE Trans. Anntenas Propag. 10, 246–254 (1962).

    ADS 

    Google Scholar
     

  • Source link