May 4, 2024
Compact [C ii] emitters around a C iv absorption complex at redshift 5.7 – Nature

Compact [C ii] emitters around a C iv absorption complex at redshift 5.7 – Nature

  • Simcoe, R. A., Sargent, W. L. W., Rauch, M. & Becker, G. Observations of chemically enriched QSO absorbers near z~2.3 galaxies: galaxy formation feedback signatures in the intergalactic medium. Astrophys. J. 637, 648–668 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prochaska, J. X. et al. The UCSD/Keck damped Lyα abundance database: a decade of high-resolution spectroscopy. Astrophys. J. Suppl. Ser. 171, 29–60 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fox, A. J., Ledoux, C., Petitjean, P. & Srianand, R. C IV absorption in damped and sub-damped Lyman-α systems. Correlations with metallicity and implications for galactic winds at z ≈ 2–3. Astron. Astrophys. 473, 791–803 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bordoloi, R. et al. Resolving the H I in damped Lyman α systems that power star formation. Nature 606, 59–63 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Díaz, C. G. et al. Faint LAEs near z > 4.7 C IV absorbers revealed by MUSE. Mon. Not. R. Astron. Soc. 502, 2645–2663 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Y. et al. A [C II] 158 μm emitter associated with an O I absorber at the end of the reionization epoch. Nat. Astron. 5, 1110–1117 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Becker, G. D., Sargent, W. L. W., Rauch, M. & Simcoe, R. A. Discovery of excess O I absorption toward the z = 6.42 QSO SDSS J1148+5251. Astrophys. J. 640, 69–80 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Simcoe, R. A. et al. Constraints on the universal C IV mass density at z ~ 6 from early infrared spectra obtained with the Magellan FIRE spectrograph. Astrophys. J. 743, 21 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Chen, S.-F. S. et al. Mg II absorption at 2 < z < 7 with Magellan/Fire. III. Full statistics of absorption toward 100 high-redshift QSOs. Astrophys. J. 850, 188 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Codoreanu, A. et al. The CGM and IGM at z ~ 5: metal budget and physical connection. Mon. Not. R. Astron. Soc. 481, 4940–4959 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cooper, T. J. et al. Heavy element absorption systems at 5.0 < z < 6.8: metal-poor neutral gas and a diminishing signature of highly ionized circumgalactic matter. Astrophys. J. 882, 77 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Becker, G. D. et al. The evolution of O I over 3.2 < z < 6.5: reionization of the circumgalactic medium. Astrophys. J. 883, 163 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vallini, L., Gallerani, S., Ferrara, A. & Baek, S. Far-infrared line emission from high-redshift galaxies. Mon. Not. R. Astron. Soc. 433, 1567–1572 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vallini, L., Gallerani, S., Ferrara, A., Pallottini, A. & Yue, B. On the [CII]-SFR relation in high redshift galaxies. Astrophys. J. 813, 36 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Dutta, R. et al. Metal-enriched halo gas across galaxy overdensities over the last 10 billion years. Mon. Not. R. Astron. Soc. 508, 4573–4599 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Toshikawa, J. et al. Discovery of protoclusters at z ~ 3.7 and 4.9: embedded in primordial superclusters. Astrophys. J. 888, 89 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Venemans, B. P. et al. Kiloparsec-scale ALMA imaging of [C II] and dust continuum emission of 27 quasar host galaxies at z ~ 6. Astrophys. J. 904, 130 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zana, T. et al. Enhanced star formation in z ~ 6 quasar companions. Mon. Not. R. Astron. Soc. 513, 2118–2135 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aravena, M. et al. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: search for [C II] line and dust emission in 6 < z < 8 galaxies. Astrophys. J. 833, 71 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Neeleman, M. et al. [C II] 158-μm emission from the host galaxies of damped Lyman-alpha systems. Science 355, 1285–1288 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujimoto, S. et al. The ALPINE–ALMA [C II] survey: size of individual star-forming galaxies at z = 4–6 and their extended halo structure. Astrophys. J. 900, 1 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fudamoto, Y. et al. The ALMA REBELS survey: average [C II] 158 μm sizes of star-forming galaxies from z ~ 7 to z ~ 4. Astrophys. J. 934, 144 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Olsen, K. P. et al. Simulator of Galaxy Millimeter/Submillimeter Emission (SíGAME): The [C II]-SFR relationship of massive z = 2 main sequence galaxies. Astrophys. J. 814, 76 (2015).

    Article 
    ADS 

    Google Scholar
     

  • De Looze, I. et al. The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types. Astron. Astrophys. 568, A62 (2014).

    Article 

    Google Scholar
     

  • Schaerer, D. et al. The ALPINE-ALMA [C II] survey. Little to no evolution in the [C II]-SFR relation over the last 13 Gyr. Astron. Astrophys. 643, A3 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Carniani, S. et al. Kiloparsec-scale gaseous clumps and star formation at z = 5–7. Mon. Not. R. Astron. Soc. 478, 1170–1184 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Le Fèvre, O. et al. The ALPINE-ALMA [CII] survey. Survey strategy, observations, and sample properties of 118 star-forming galaxies at 4 < z < 6. Astron. Astrophys. 643, A1 (2020).

    Article 

    Google Scholar
     

  • Fudamoto, Y. et al. The ALPINE-ALMA [CII] survey. Dust attenuation properties and obscured star formation at z ~ 4.4–5.8. Astron. Astrophys. 643, A4 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pentericci, L. et al. Tracing the reionization epoch with ALMA: [C II] emission in z ~ 7 galaxies. Astrophys. J. Lett. 829, L11 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Bradač, M. et al. ALMA [C II] 158 μm detection of a redshift 7 lensed galaxy behind RX J1347.1–1145. Astrophys. J. Lett. 836, L2 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Behrens, C., Pallottini, A., Ferrara, A., Gallerani, S. & Vallini, L. Dusty galaxies in the Epoch of Reionization: simulations. Mon. Not. R. Astron. Soc. 477, 552–565 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar
     

  • Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Supp. 219, 12 (2015).

    Article 
    ADS 

    Google Scholar
     

  • McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI ASP Conference Series Vol. 376 (eds Shaw, R. A., Hill, F. & Bell, D. J.) 127 (Astronomical Society of the Pacific, 2007).

  • Walter, F. et al. ALMA spectroscopic survey in the Hubble Ultra Deep Field: survey description. Astrophys. J. 833, 67 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Boogaard, L., Meyer, R. A. & Novak, M. Interferopy: analysing datacubes from radio-to-submm observations. Zenodo https://zenodo.org/record/5775604 (2021).

  • Popping, G. et al. Sub-mm emission line deep fields: CO and [C II] luminosity functions out to z = 6. Mon. Not. R. Astron. Soc. 461, 93–110 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferrara, A. et al. The ALMA REBELS Survey. Epoch of Reionization giants: properties of dusty galaxies at z ≈ 7. Mon. Not. R. Astron. Soc. 512, 58–72 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Béthermin, M. et al. The ALPINE-ALMA [CII] survey: data processing, catalogs, and statistical source properties. Astron. Astrophys. 643, A2 (2020).

    Article 

    Google Scholar
     

  • Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

    Article 

    Google Scholar
     

  • Simcoe, R. A. et al. FIRE: a facility class near-infrared echelle spectrometer for the Magellan telescopes. Publ. Astron. Soc. Pac. 125, 270 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gagné, J., Lambrides, E., Faherty, J. K. & Simcoe, R. FireHose_v2: Firehose v2.0. Zenodo https://zenodo.org/record/18775 (2015).

  • Vacca, W. D., Cushing, M. C. & Rayner, J. T. A method of correcting near-infrared spectra for telluric absorption. Publ. Astron. Soc. Pac. 115, 389–409 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Cushing, M. C., Vacca, W. D. & Rayner, J. T. Spextool: a spectral extraction package for SpeX, a 0.8–5.5 micron cross-dispersed spectrograph. Publ. Astron. Soc. Pac. 116, 362–376 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hoffmann, S. L. et al. The DrizzlePac Handbook, Version 2.0. Space Telescope Science Institute https://hst-docs.stsci.edu/drizzpac (2021).

  • Weilbacher, P. M. et al. The data processing pipeline for the MUSE instrument. Astron. Astrophys. 641, A28 (2020).

    Article 

    Google Scholar
     

  • Borisova, E. et al. Ubiquitous giant Lyα nebulae around the brightest quasars at z ~ 3.5 revealed with MUSE. Astrophys. J. 831, 39 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Cantalupo, S. et al. The large- and small-scale properties of the intergalactic gas in the Slug Ly α nebula revealed by MUSE He II emission observations. Mon. Not. R. Astron. Soc. 483, 5188–5204 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bacon, R. et al. The MUSE 3D view of the Hubble Deep Field South. Astron. Astrophys. 575, A75 (2015).

    Article 

    Google Scholar
     

  • Source link