May 4, 2024
Compositionally complex doping for zero-strain zero-cobalt layered cathodes – Nature

Compositionally complex doping for zero-strain zero-cobalt layered cathodes – Nature

  • Turcheniuk, K., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 559, 467–470 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Li, W., Lee, S. & Manthiram, A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, H. et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin, R. et al. Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery. Nat. Commun. 10, 1650 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Manthiram, A. & Goodenough, J. B. Layered lithium cobalt oxide cathodes. Nat. Energy 6, 323–323 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, W. et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Edn Engl. 54, 4440–4457 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Yan, P. et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat. Commun. 9, 2437 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600–605 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T. & Janek, J. There and back again—the journey of LiNiO2 as a cathode active material. Angew. Chem. Int. Edn Engl. 58, 10434–10458 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, T. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286 (2021).

  • Li, J. et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. 16, 599–605 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mu, L. et al. Dopant distribution in Co-free high-energy layered cathode materials. Chem. Mater. 31, 9769–9776 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Mu, L. et al. Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl. Mater. Interfaces 12, 12874–12882 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun, H. H. et al. Beyond doping and coating: prospective strategies for stable high-capacity layered Ni-rich cathodes. ACS Energy Lett. 5, 1136–1146 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Xie, Q., Li, W. & Manthiram, A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 31, 938–946 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 4, 2013–2026 (2021).

  • Wang, C., Zhang, R., Kisslinger, K. & Xin, H. L. Atomic-scale observation of O1 faulted phase-induced deactivation of LiNiO2 at high voltage. Nano Lett. 21, 3657–3663 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng, X., Ren, D., He, X. & Ouyang, M. Mitigating thermal runaway of lithium-ion batteries. Joule 4, 743–770 (2020).

  • Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zeng, X., Zhan, C., Lu, J. & Amine, K. Stabilization of a High-capacity and high-power nickel-based cathode for Li-ion batteries. Chem 4, 690–704 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Huang, Y. et al. Thermal stability and reactivity of cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 7013–7021 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, C., Ding, F., Lu, Y., Chen, L. & Hu, Y. S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Edn Engl. 59, 264–269 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lun, Z. et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, J. et al. Lithium containing layered high entropy oxide structures. Sci. Rep. 10, 18430 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zou, L. et al. Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. Nat. Commun. 10, 3447 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bak, S.-M. et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 6, 22594–22601 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362–371 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Xu, J. et al. Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 31677–31683 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tian, C. et al. Charge heterogeneity and surface chemistry in polycrystalline cathode materials. Joule 2, 464–477 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ohzuku, T., Ueda, A. & Yamamoto, N. Zero‐strain insertion material of Li [Li1/3Ti5/3] O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Funke, H., Scheinost, A. C. & Chukalina, M. Wavelet analysis of extended x-ray absorption fine structure data. Phys. Rev. B 71, 094110 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. In X-Ray Nanoimaging: Instruments and Methods III vol. 10389 (eds Somogyi, A. & Lai, B.) https://doi.org/10.1117/12.2272585 (Proc. SPIE, International Society for Optical Engineering, 2017).

  • Sun, X. et al. New phases and phase transitions observed in over-charged states of LiCoO2-based cathode materials. J. Power Sources 97-98, 274–276 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • de Picciotto, L. A., Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Structural characterization of delithiated LiVO2. Mater. Res. Bull. 19, 1497–1506 (1984).

    Article 

    Google Scholar
     

  • Zhou, Y.-N. et al. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nat. Commun. 5, 5381 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, H. et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett. 17, 3452–3457 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Watanabe, S., Kinoshita, M., Hosokawa, T., Morigaki, K. & Nakura, K. Capacity fading of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge–discharge cycling on the suppression of the micro-crack generation of LiAlyNi1−x−yCoxO2 particle). J. Power Sources 260, 50–56 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • de Biasi, L. et al. Between scylla and charybdis: balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries. J. Phys. Chem. C 121, 26163–26171 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cui, Z., Xie, Q. & Manthiram, A. Zinc-doped high-nickel, low-cobalt layered oxide cathodes for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 15324–15332 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, S. et al. In-depth analysis of the degradation mechanisms of high-nickel, low/no-cobalt layered oxide cathodes for lithium-ion batteries. Adv. Energy Mater. 11, 2100858 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Xie, Q., Cui, Z. & Manthiram, A. Unveiling the stabilities of nickel-based layered oxide cathodes at an identical degree of delithiation in lithium-based batteries. Adv. Mater. 33, 2100804 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, K., Xie, Q., Li, B. & Manthiram, A. An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries. Energy Storage Mater. 34, 229–240 (2021).

    Article 

    Google Scholar
     

  • Yoon, C. S. et al. High-energy Ni-rich Li[NixCoyMn1–x–y]O2 cathodes via compositional partitioning for next-generation electric vehicles. Chem. Mater. 29, 10436–10445 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Source link