May 9, 2024
Continental configuration controls ocean oxygenation during the Phanerozoic – Nature

Continental configuration controls ocean oxygenation during the Phanerozoic – Nature

  • Payne, J. L. et al. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc. Natl Acad. Sci. USA 106, 24–27 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cole, D. B. et al. On the co-evolution of surface oxygen levels and animals. Geobiology 18, 260–281 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Sperling, E. A., Knoll, A. H. & Girguis, P. R. The ecological physiology of Earth’s second oxygen revolution. Annu. Rev. Ecol. Evol. Syst. 46, 215–235 (2015).

    Article 

    Google Scholar
     

  • Krause, A. J. et al. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Commun. 9, 4081 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tostevin, R. & Mills, B. J. Reconciling proxy records and models of Earth’s oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus 10, 20190137 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kocsis, Á. T., Reddin, C. J., Alroy, J. & Kiessling, W. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 10, 735–743 (2019).

    Article 

    Google Scholar
     

  • Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Edwards, C. T., Saltzman, M. R., Royer, D. L. & Fike, D. A. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nat. Geosci. 10, 925–929 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dahl, T. W., Hammarlund, E. U. & Anbar, A. D. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc. Natl Acad. Sci. 107, 17911–17915 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zou, C. et al. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction. Geology 46, 535–538 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bond, D., Wignall, P. B. & Racki, G. Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geol. Mag. 141, 173–193 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Lau, K. V. et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl Acad. Sci. 113, 2360–2365 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science 5, eaar5372 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sperling, E. A. et al. A long-term record of early to mid-Paleozoic marine redox change. Sci. Adv. 7, eabf4382 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lenton, T. M. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. 113, 9704–9709 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Valdes, P., Scotese, C. & Lunt, D. Deep ocean temperatures through time. Clim. Past 17, 1483–1506 (2021).

    Article 

    Google Scholar
     

  • Farnsworth, A. et al. Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Scotese, C. R., Song, H., Mills, B. J. & van der Meer, D. G. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Monteiro, F. M., Pancost, R. D., Ridgwell, A. & Donnadieu, Y. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): model-data comparison. Paleoceanography 27, PA4209 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Ridgwell, A. et al. Marine geochemical data assimilation in an efficient Earth system model of global biogeochemical cycling. Biogeosciences 4, 87–104 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pohl, A. et al. Vertical decoupling in Late Ordovician anoxia due to reorganization of ocean circulation. Nat. Geosci. 14, 868–873 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ward, B. A. et al. EcoGEnIE 1.0: plankton ecology in the cGENIE Earth system model. Geosci. Model Dev. 11, 4241–5267 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Crichton, K. A., Wilson, J. D., Ridgwell, A. & Pearson, P. N. Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model. Geosci. Model Dev. 14, 125–149 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Scotese, C. R. & Wright, N. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic. PALEOMAP Project. https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/ (2018).

  • Pohl, A. et al. Quantifying the paleogeographic driver of Cretaceous carbonate platform development using paleoecological niche modeling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 222–232 (2019).

    Article 

    Google Scholar
     

  • Hülse, D. et al. End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia. Nat. Geosci. 14, 862–867 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Baudin, F. & Riquier, L. The late Hauterivian Faraoni ‘oceanic anoxic event’: an update. Bull. Soc. Géol. Fr. 185, 359–377 (2014).

    Article 

    Google Scholar
     

  • Laugié, M. et al. Exploring the impact of Cenomanian paleogeography and marine gateways on oceanic oxygen. Paleoceanogr. Paleoclimatol. 36, e2020PA004202 (2021).

    Article 

    Google Scholar
     

  • De Vleeschouwer, D. et al. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nat. Commun. 8, 2268 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ruvalcaba Baroni, I. et al. Ocean circulation in the Toarcian (Early Jurassic): a key control on deoxygenation and carbon burial on the European Shelf. Paleoceanogr. Paleoclimatol. 33, 994–1012 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Torsvik, T. H. BugPlates: Linking Biogeography and Palaeogeography (2009).

  • Ferreira, D., Marshall, J., Ito, T. & McGee, D. Linking glacial-interglacial states to multiple equilibria of climate. Geophys. Res. Lett. 45, 9160–9170 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Weijer, W. & Dijkstra, H. A. Multiple oscillatory modes of the global ocean circulation. J. Phys. Oceanogr. 33, 2197–2213 (2003).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Sirkes, Z. & Tziperman, E. Identifying a damped oscillatory thermohaline mode in a general circulation model using an adjoint model. J. Phys. Oceanogr. 31, 2297–2306 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Meissner, K. J., Eby, M., Weaver, A. J. & Saenko, O. A. CO2 threshold for millennial-scale oscillations in the climate system: Implications for global warming scenarios. Clim. Dyn. 30, 161–174 (2008).

    Article 

    Google Scholar
     

  • Haarsma, R. J., Opsteegh, J. D., Selten, F. M. & Wang, X. Rapid transitions and ultra-low frequency behaviour in a 40 kyr integration with a coupled climate model of intermediate complexity. Clim. Dyn. 17, 559–570 (2001).

    Article 

    Google Scholar
     

  • Stolper, D. A. & Keller, C. B. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553, 323–327 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brand, U. et al. Atmospheric oxygen of the Paleozoic. Earth Sci. Rev. 216, 103560 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Dahl, T. W. et al. Reorganisation of Earth’s biogeochemical cycles briefly oxygenated the oceans 520 Myr ago. Geochem. Perspect. Lett. 3, 210–220 (2019).


    Google Scholar
     

  • Wei, G. Y. et al. Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records. Earth Sci. Rev. 214, 103506 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wei, G. Y. et al. Marine redox fluctuation as a potential trigger for the Cambrian explosion. Geology 46, 587–590 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kendall, B. et al. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochim. Cosmochim. Acta 156, 173–193 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dahl, T. W. et al. Brief oxygenation events in locally anoxic oceans during the Cambrian solves the animal breathing paradox. Sci Rep. 9, 11669 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Payne, J. L., Bachan, A., Heim, N. A., Hull, P. M. & Knope, M. L. The evolution of complex life and the stabilization of the Earth system. Interface Focus 10, 20190106 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wilson, J. D., Monteiro, F. M., Schmidt, D. N., Ward, B. A. & Ridgwell, A. Linking marine plankton ecosystems and climate: a new modeling approach to the warm early Eocene climate. Paleoceanogr. Paleoclimatol. 33, 1439–1452 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Cao, L. et al. The role of ocean transport in the uptake of anthropogenic CO2. Biogeosciences 6, 375–390 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Reinhard, T. C. et al. Oceanic and atmospheric methane cycling in the cGENIE Earth system model – release v0.9.14. Geosci. Model Dev. 13, 5687–5706 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • van de Velde, S. J., Hülse, D., Reinhard, C. T. & Ridgwell, A. Iron and sulfur cycling in the cGENIE.muffin Earth system model (v0.9.21). Geosci. Model Dev. 14, 2713–2745 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jacob, R. L. Low Frequency Variability in a Simulated Atmosphere-Ocean System.Thesis, Univ. Wisconsin (1997).

  • Crichton, K. A., Ridgwell, A., Lunt, D., Farnsworth, A. & Pearson, P. Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model. Clim. Past 17, 2223–2254 (2021).

    Article 

    Google Scholar
     

  • Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article 

    Google Scholar
     

  • Weijer, W. et al. Stability of the Atlantic Meridional Overturning Circulation: a review and synthesis. J. Geophys. Res. Oceans 124, 5336–5375 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Ferreira, D., Marshall, J. & Campin, J. M. Localization of deep water formation: role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Clim. 23, 1456–1476 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Garcia, H. E. et al. World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Dissolved Oxygen Saturation (National Oceanic and Atmospheric Administration, 2019).

  • Marsh, R. et al. Bistability of the thermohaline circulation identified through comprehensive 2-parameter sweeps of an efficient climate model. Clim. Dyn. 23, 761–777 (2004).

    Article 

    Google Scholar
     

  • DeVries, T. & Holzer, M. Radiocarbon and helium isotope constraints on deep ocean ventilation and mantle-3He sources. J. Geophys. Res. Oceans 124, 3036–3057 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Song, H. et al. The onset of widespread marine red beds and the evolution of ferruginous oceans. Nat. Commun. 8, 399 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Melchin, M. J., Mitchell, C. E., Holmden, C. & Štorch, P. Environmental changes in the Late Ordovician–early Silurian: review and new insights from black shales and nitrogen isotopes. Geol. Soc. Am. Bull. 125, 1635–1670 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pohl, A., Nardin, E., Vandenbroucke, T. R. A. & Donnadieu, Y. High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels. Palaeogeogr. Palaeoclimatol. Palaeoecol. 458, 39–51 (2016).

    Article 

    Google Scholar
     

  • Meyer, K. M., Ridgwell, A. & Payne, J. L. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems. Geobiology 14, 207–219 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link