May 25, 2024
Continuous carbon capture in an electrochemical solid-electrolyte reactor – Nature

Continuous carbon capture in an electrochemical solid-electrolyte reactor – Nature

  • Haszeldine, R. S. Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Digdaya, I. A. et al. A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. Nat. Commun. 11, 4412 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Renfrew, S. E., Starr, D. E. & Strasser, P. Electrochemical approaches toward CO2 capture and concentration. ACS Catal. 10, 13058–13074 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Eisaman, M. D., Alvarado, L., Larner, D., Wang, P. & Littau, K. A. CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy Environ. Sci. 4, 4031–4037 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gurkan, B. et al. Perspective and challenges in electrochemical approaches for reactive CO2 separations. iScience 24, 103422 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Leung, D. Y. C., Caramanna, G. & Maroto-Valer, M. M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39, 426–443 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Metz, B., Davidson, O., de Coninck, H., Loos, M. & Meyer, L. (eds) IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge Univ. Press, 2005).

  • Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rochelle Gary, T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tan, W.-L., Ahmad, A. L., Leo, C. P. & Lam, S. S. A critical review to bridge the gaps between carbon capture, storage and use of CaCO3. J. CO2 Util. 42, 101333 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Trickett, C. A. et al. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2, 17045 (2017).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lyu, H., Li, H., Hanikel, N., Wang, K. & Yaghi, O. M. Covalent organic frameworks for carbon dioxide capture from air. J. Am. Chem. Soc. 144, 12989–12995 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Voskian, S. & Hatton, T. A. Faradaic electro-swing reactive adsorption for CO2 capture. Energy Environ. Sci. 12, 3530–3547 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Datta, S. et al. Electrochemical CO2 capture using resin-wafer electrodeionization. Ind. Eng. Chem. Res. 52, 15177–15186 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Eisaman, M. D. et al. CO2 extraction from seawater using bipolar membrane electrodialysis. Energy Environ. Sci. 5, 7346–7352 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y., Ye, H.-Z., Diederichsen, K. M., Van Voorhis, T. & Hatton, T. A. Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nat. Commun. 11, 2278 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ranjan, R. et al. Reversible electrochemical trapping of carbon dioxide using 4,4′-bipyridine that does not require thermal activation. J. Phys. Chem. Lett. 6, 4943–4946 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willauer, H. D., DiMascio, F., Hardy, D. R. & Williams, F. W. Feasibility of CO2 extraction from seawater and simultaneous hydrogen gas generation using a novel and robust electrolytic cation exchange module based on continuous electrodeionization technology. Ind. Eng. Chem. Res. 53, 12192–12200 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Eisaman, M. D. et al. CO2 separation using bipolar membrane electrodialysis. Energy Environ. Sci. 4, 1319–1328 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Way, J. et al. Low voltage electrochemical process for direct carbon dioxide sequestration. J. Electrochem. Soc. 159, B627–B628 (2012).

    Article 

    Google Scholar
     

  • Park, H. S. et al. CO2 fixation by membrane separated NaCl electrolysis. Energies 8, 8704–8715 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Youn, M. H. et al. Carbon dioxide sequestration process for the cement industry. J. CO2 Util. 34, 325–334 (2019).

    Article 
    CAS 

    Google Scholar
     

  • McCallum, C. et al. Reducing the crossover of carbonate and liquid products during carbon dioxide electroreduction. Cell Rep. Phys. Sci. 2, 100522 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sun, Y. et al. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nat. Commun. 12, 5984 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Li, J. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 1, 592–600 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Pande, N. et al. Electrochemically induced pH change: time-resolved confocal fluorescence microscopy measurements and comparison with numerical model. J. Phys. Chem. Lett. 11, 7042–7048 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M. J. et al. Understanding the bifunctional effect for removal of CO poisoning: blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system. ACS Catal. 6, 2398–2407 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138, 6396–6399 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, L., Shang, L., Zhang, T. & Waterhouse, G. I. N. Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc–air batteries. Adv. Energy Mater. 10, 2003018 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chung Hoon, T. et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357, 479–484 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Li, F. et al. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 11, 2263–2269 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z.-Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Yin, P. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Holmes, G. & Keith, D. W. An air–liquid contactor for large-scale capture of CO2 from air. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 4380–4403 (2012).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Stolaroff, J. K., Keith, D. W. & Lowry, G. V. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Energy Environ. Sci. 42, 2728–2735 (2008).

    CAS 

    Google Scholar
     

  • Mahmoudkhani, M. & Keith, D. W. Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—thermodynamic analysis. Int. J. Greenh. Gas Control 3, 376–384 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Rahimi, M. et al. Carbon dioxide capture using an electrochemically driven proton concentration process. Cell Rep. Phys. Sci. 1, 100033 (2020).

    Article 

    Google Scholar
     

  • Bakhmutova-Albert, E. V., Yao, H., Denevan, D. E. & Richardson, D. E. Kinetics and mechanism of peroxymonocarbonate formation. Inorg. Chem. 49, 11287–11296 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article 

    Google Scholar
     

  • Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Xia, Y. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 4225 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Source link