May 6, 2024
Control of chiral orbital currents in a colossal magnetoresistance material – Nature

Control of chiral orbital currents in a colossal magnetoresistance material – Nature

  • Ni, Y. et al. Colossal magnetoresistance via avoiding fully polarized magnetization in the ferrimagnetic insulator Mn3Si2Te6. Phys. Rev. B 103, L161105 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Seo, J. et al. Colossal angular magnetoresistance in ferrimagnetic nodal-line semiconductors. Nature 599, 576–581 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171–8199 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Millis, A. J., Shraiman, B. I. & Mueller, R. Dynamic Jahn–Teller effect and colossal magnetoresistance in La1–xSrxMnO3. Phys. Rev. Lett. 77, 175–178 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Salamon, M. B. & Jaime, M. The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, 2002).

  • Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–848 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Majumdar, P. & Littlewood, P. Magnetoresistance in Mn pyrochlore: electrical transport in a low carrier density ferromagnet. Phys. Rev. Lett. 81, 1314–1317 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shimakawa, Y., Kubo, Y. & Manako, T. Giant magnetoresistance in Tl2Mn2O7 with the pyrochlore structure. Nature 379, 53–55 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rosa, P. et al. Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator. npj Quantum Mater. 5, 52 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yin, J. et al. Large negative magnetoresistance in the antiferromagnetic rare-earth dichalcogenide, EuTe2. Phys. Rev. Mater. 4, 013405 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Perfetti, L. et al. Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+δ by time-resolved photoelectron spectroscopy. Phys. Rev. Lett. 99, 197001 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Varma, C. M. Theory of the pseudogap state of the cuprates. Phys. Rev. B 73, 155113 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Varma, C. M. Pseudogap in cuprates in the loop-current ordered state. J. Phys. Condens. Matter 26, 505701 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pershoguba, S. S., Kechedzhi, K. & Yakovenko, V. M. Proposed chiral texture of the magnetic moments of unit-cell loop currents in the pseudogap phase of cuprate superconductors. Phys. Rev. Lett. 111, 047005 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Pershoguba, S. S., Kechedzhi, K. & Yakovenko, V. M. Erratum: proposed chiral texture of the magnetic moments of unit-cell loop currents in the pseudogap phase of cuprate. Phys. Rev. Lett. 113, 129901 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Scagnoli, V. et al. Observation of orbital currents in CuO. Science 332, 696–698 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Di Matteo, S. & Norman, M. R. Orbital currents, anapoles, and magnetic quadrupoles in CuO. Phys. Rev. B 85, 235143 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Yakovenko, V. M. Tilted loop currents in cuprate superconductors. Physica B 460, 159–164 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bourges, P., Bounoua, D. & Sidis, Y. Loop currents in quantum matter. Comp. Rend. Phys. 22, 7–31 (2021).

  • Zhao, L. et al. Evidence of an odd-parity hidden order in a spin-orbit coupled correlated iridates. Nat. Phys. 12, 32–36 (2015).

    Article 

    Google Scholar
     

  • Jeong, J., Sidis, Y., Louat, A., Brouet, V. & Bourges, P. Time-reversal symmetry breaking hidden order in Sr2(Ir,Rh)O4. Nat. Commun. 8, 15119 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Murayama, H. et al. Bond directional anapole order in a spin-orbit coupled mott insulator Sr2Ir1-xRhxO4. Phys. Rev. X 11, 011021 (2021).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the Kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Teng, X. et al. Discovery of charge density wave in a kagome lattice antiferromagnet. Nature 609, 490–495 (2022).

  • Guo, C. et al. Field-tuned chiral transport in charge-ordered CsV3Sb5. Preprint at https://arxiv.org/abs/2203.09593.

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323–1327 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • May, A. F. et al. Magnetic order and interactions in ferrimagnetic Mn3Si2Te6. Phys. Rev. B 95, 174440 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Liu, Y. & Petrovic, C. Critical behavior and magnetocaloric effect in Mn3Si2Te6. Phys. Rev. B 98, 064423 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ye, F. et al. Magnetic structure and spin fluctuation in colossal magnetoresistance ferrimagnet Mn3Si2Te6. arXiv:2209.13664 (2022).

  • Cao, G. et al. Electrical control of structural and physical properties via strong spin-orbit interactions in Sr2IrO4. Phys. Rev. Lett. 120, 017201 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhao, H. et al. Nonequilibrium orbital transitions via applied electrical current in calcium ruthenates. Phys. Rev. B 100, 241104(R) (2019).

    ADS 
    Article 

    Google Scholar
     

  • Jeong, D. S. et al. Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Meijer, G. I. Who wins the nonvolatile memory race? Science 319, 1625–1626 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Giaever, I. & Megerle, K. Study of superconductors by electron tunneling. Phys. Rev. 122, 1101–1111 (1961).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tang, Y. et al. Orientation of the intra-unit-cell magnetic moment in the high-Tc superconductor HgBa2CuO4+δ. Phys. Rev. B 98, 214418 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pershoguba, S. S. & Yakovenko, V. M. Optical control of topological memory based on orbital magnetization. Phys. Rev. B 105, 064423 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Nandkishore, R. & Levitov, L. Polar Kerr effect and time reversal symmetry breaking in bilayer graphene. Phys. Rev. Lett. 107, 097402 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Source link