April 26, 2024
CRISPR screens in Drosophila cells identify Vsg as a Tc toxin receptor – Nature

CRISPR screens in Drosophila cells identify Vsg as a Tc toxin receptor – Nature

  • Lacey, L. A. et al. Insect pathogens as biological control agents: back to the future. J. Invertebr. Pathol. 132, 1–41 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Labaude, S. & Griffin, C. T. Transmission success of entomopathogenic nematodes used in pest control. Insects 9, 72 (2018).

    PubMed Central 
    Article 

    Google Scholar
     

  • Bowen, D. et al. Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280, 2129–2132 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roderer, D. & Raunser, S. Tc toxin complexes: assembly, membrane permeation, and protein translocation. Annu. Rev. Microbiol. 73, 247–265 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Waterfield, N. R., Bowen, D. J., Fetherston, J. D., Perry, R. D. & ffrench-Constant, R. H. The tc genes of Photorhabdus: a growing family. Trends Microbiol. 9, 185–191 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Waterfield, N. R., Ciche, T. & Clarke, D. Photorhabdus and a host of hosts. Annu. Rev. Microbiol. 63, 557–574 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clarke, D. J. Photorhabdus: a tale of contrasting interactions. Microbiology (Reading) 166, 335–348 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Leidreiter, F. et al. Common architecture of Tc toxins from human and insect pathogenic bacteria. Sci. Adv. 5, eaax6497 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hares, M. C. et al. The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells. Microbiology (Reading) 154, 3503–3517 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Landsberg, M. J. et al. 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc. Natl Acad. Sci. USA 108, 20544–20549 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Song, N. et al. Genome-wide dissection reveals diverse pathogenic roles of bacterial Tc toxins. PLoS Pathog. 17, e1009102 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Waterfield, N., Hares, M., Yang, G., Dowling, A. & ffrench-Constant, R. Potentiation and cellular phenotypes of the insecticidal Toxin complexes of Photorhabdus bacteria. Cell. Microbiol. 7, 373–382 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gatsogiannis, C. et al. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495, 520–523 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meusch, D. et al. Mechanism of Tc toxin action revealed in molecular detail. Nature 508, 61–65 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Piper, S. J. et al. Cryo-EM structures of the pore-forming A subunit from the Yersinia entomophaga ABC toxin. Nat. Commun. 10, 1952 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Busby, J. N., Panjikar, S., Landsberg, M. J., Hurst, M. R. & Lott, J. S. The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature 501, 547–550 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gatsogiannis, C. et al. Tc toxin activation requires unfolding and refolding of a β-propeller. Nature 563, 209–213 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roderer, D., Hofnagel, O., Benz, R. & Raunser, S. Structure of a Tc holotoxin pore provides insights into the translocation mechanism. Proc. Natl Acad. Sci. USA 116, 23083–23090 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gatsogiannis, C. et al. Membrane insertion of a Tc toxin in near-atomic detail. Nat. Struct. Mol. Biol. 23, 884–890 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lang, A. E. et al. Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327, 1139–1142 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roderer, D. et al. Glycan-dependent cell adhesion mechanism of Tc toxins. Nat. Commun. 11, 2694 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ng’ang’a, P. N. et al. Involvement of N-glycans in binding of Photorhabdus luminescens Tc toxin. Cell. Microbiol. 23, e13326 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Song, N. et al. N-glycans and sulfated glycosaminoglycans contribute to the action of diverse Tc toxins on mammalian cells. PLoS Pathog. 17, e1009244 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tao, L. et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature 538, 350–355 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou, Y. et al. High-throughput screening of a CRISPR–Cas9 library for functional genomics in human cells. Nature 509, 487–491 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Viswanatha, R., Li, Z., Hu, Y. & Perrimon, N. Pooled genome-wide CRISPR screening for basal and context-specific fitness gene essentiality in Drosophila cells. eLife 7, e36333 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hacker, U., Lin, X. & Perrimon, N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565–3573 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaiser, E. et al. Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by cyclophilin A and Hsp90. Infect. Immun. 79, 3913–3921 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou, G. Q. et al. The Drosophila ortholog of the endolysosomal membrane protein, endolyn, regulates cell proliferation. J. Cell. Biochem. 99, 1380–1396 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Watt, S. M., Buhring, H. J., Simmons, P. J. & Zannettino, A. W. C. The stem cell revolution: on the role of CD164 as a human stem cell marker. NPJ Regen. Med. 6, 33 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buszczak, M. et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Airoldi, S. J., McLean, P. F., Shimada, Y. & Cooley, L. Intercellular protein movement in syncytial Drosophila follicle cells. J. Cell Sci. 124, 4077–4086 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hoffmann, J. A. & Reichhart, J. M. Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3, 121–126 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kounatidis, I. & Ligoxygakis, P. Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol. 2, 120075 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boman, H. G., Nilsson, I. & Rasmuson, B. Inducible antibacterial defence system in Drosophila. Nature 237, 232–235 (1972).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bakkers, M. J. G. et al. CD164 is a host factor for lymphocytic choriomeningitis virus entry. Proc. Natl Acad. Sci. USA 119, e2119676119 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, J. et al. Genome-wide knockout screen identifies human sialomucin CD164 as an essential entry factor for lymphocytic choriomeningitis virus. mBio 13, e0020522 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Daborn, P. J., Waterfield, N., Blight, M. A. & ffrench-Constant, R. H. Measuring virulence factor expression by the pathogenic bacterium Photorhabdus luminescens in culture and during insect infection. J. Bacteriol. 183, 5834–5839 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Silva, C. P. et al. Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta. Cell. Microbiol. 4, 329–339 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR–Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Viswanatha, R. et al. Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos. Nat. Commun. 12, 6825 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jones, S. A. & Hurst, M. R. Purification of the Yersinia entomophaga Yen-TC toxin complex using size exclusion chromatography. Methods Mol. Biol. 1477, 39–48 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kurz, S. et al. Targeted release and fractionation reveal glucuronylated and sulphated N- and O-glycans in larvae of dipteran insects. J. Proteomics 126, 172–188 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link