May 3, 2024
De novo design of luciferases using deep learning – Nature

De novo design of luciferases using deep learning – Nature

  • Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rothlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Yeh, H. W. et al. Red-shifted luciferase–luciferin pairs for enhanced bioluminescence imaging. Nat. Methods 14, 971–974 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Love, A. C. & Prescher, J. A. Seeing (and using) the light: recent developments in bioluminescence technology. Cell Chem. Biol. 27, 904–920 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Syed, A. J. & Anderson, J. C. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev. 50, 5668–5705 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yeh, H.-W. & Ai, H.-W. Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu. Rev. Anal. Chem. 12, 129–150 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zambito, G., Chawda, C. & Mezzanotte, L. Emerging tools for bioluminescence imaging. Curr. Opin. Chem. Biol. 63, 86–94 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Markova, S. V., Larionova, M. D. & Vysotski, E. S. Shining light on the secreted luciferases of marine copepods: current knowledge and applications. Photochem. Photobiol. 95, 705–721 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, T. Y., Du, L. P. & Li, M. Y. Lighting up bioluminescence with coelenterazine: strategies and applications. Photochem. Photobiol. Sci. 15, 466–480 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Michelini, E. et al. Spectral-resolved gene technology for multiplexed bioluminescence and high-content screening. Anal. Chem. 80, 260–267 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Rathbun, C. M. et al. Parallel screening for rapid identification of orthogonal bioluminescent tools. ACS Cent. Sci. 3, 1254–1261 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yeh, H.-W., Wu, T., Chen, M. & Ai, H.-W. Identification of factors complicating bioluminescence imaging. Biochemistry 58, 1689–1697 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Su, Y. C. et al. Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. Nat. Methods 17, 852–860 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lombardi, A., Pirro, F., Maglio, O., Chino, M. & DeGrado, W. F. De novo design of four-helix bundle metalloproteins: one scaffold, diverse reactivities. Acc. Chem. Res. 52, 1148–1159 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chino, M. et al. Artificial diiron enzymes with a de novo designed four‐helix bundle structure. Eur. J. Inorg. Chem. 2015, 3352–3352 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Basler, S. et al. Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold. Nat. Chem. 13, 231–235 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Norn, C. et al. Protein sequence design by conformational landscape optimization. Proc. Natl Acad. Sci. USA. 118, e2017228118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J. Y. et al. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl Acad. Sci. USA 117, 1496–1503 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Basanta, B. et al. An enumerative algorithm for de novo design of proteins with diverse pocket structures. Proc. Natl Acad. Sci. USA 117, 22135–22145 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Loening, A. M., Fenn, T. D. & Gambhir, S. S. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 374, 1017–1028 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Tomabechi, Y. et al. Crystal structure of nanoKAZ: the mutated 19 kDa component of Oplophorus luciferase catalyzing the bioluminescent reaction with coelenterazine. Biochem. Biophys. Res. Commun. 470, 88–93 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wu, N. et al. Solution structure of Gaussia luciferase with five disulfide bonds and identification of a putative coelenterazine binding cavity by heteronuclear NMR. Sci. Rep. 10, 20069 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ding, B. W. & Liu, Y. J. Bioluminescence of firefly squid via mechanism of single electron-transfer oxygenation and charge-transfer-induced luminescence. J. Am. Chem. Soc. 139, 1106–1119 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Isobe, H., Yamanaka, S., Kuramitsu, S. & Yamaguchi, K. Regulation mechanism of spin-orbit coupling in charge-transfer-induced luminescence of imidazopyrazinone derivatives. J. Am. Chem. Soc. 130, 132–149 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kondo, H. et al. Substituent effects on the kinetics for the chemiluminescence reaction of 6-arylimidazo[1,2-a]pyrazin-3(7H)-ones (Cypridina luciferin analogues): support for the single electron transfer (SET)-oxygenation mechanism with triplet molecular oxygen. Tetrahedron Lett. 46, 7701–7704 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Branchini, B. R. et al. Experimental support for a single electron-transfer oxidation mechanism in firefly bioluminescence. J. Am. Chem. Soc. 137, 7592–7595 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dou, J. Y. et al. De novo design of a fluorescence-activating β-barrel. Nature 561, 485–491 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cao, L. et al. Design of protein-binding proteins from the target structure alone. Nature 605, 551–560 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dauparas, J. et al. Robust deep learning-based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yeh, H.-W. et al. ATP-independent bioluminescent reporter variants to improve in vivo imaging. ACS Chem. Biol. 14, 959–965 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, Y. et al. Engineered amber-emitting nano luciferase and its use for immunobioluminescence imaging in vivo. J. Am. Chem. Soc. 144, 14101–14111 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bhaumik, S. & Gambhir, S. S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl Acad. Sci. USA 99, 377–382 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Szent-Gyorgyi, C., Ballou, B. T., Dagnal, E. & Bryan, B. Cloning and characterization of new bioluminescent proteins. In Proc. SPIE 3600, Biomedical Imaging: Reporters, Dyes, and Instrumentation (eds. Bornhop, D. J., Contag, C. H. & Sevick-Muraca, E. M.) https://doi.org/10.1117/12.351015 (SPIE, 1999).

  • Hall, M. P. et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 7, 1848–1857 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871-+ (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378, 56–61 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giger, L. et al. Evolution of a designed retro-aldolase leads to complete active site remodeling. Nat. Chem. Biol. 9, 494–498 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Z. et al. Multiplexed bioluminescence microscopy via phasor analysis. Nat. Methods 19, 893–898 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Source link