May 5, 2024
Dearomatization drives complexity generation in freshwater organic matter – Nature

Dearomatization drives complexity generation in freshwater organic matter – Nature

  • Perdue, E. M. & Ritchie, J. D. in Treatise on Geochemistry Vol. 5 (eds Drever, J. I. et al.) 273–318 (Elsevier, 2003).

  • Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

    Article 

    Google Scholar
     

  • Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Regnier, P., Resplandy, L., Najjar, R. G. & Clais, P. The land-to-ocean loops of the global carbon cycle. Nature 603, 401–410 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonsior, M., Powers, L. E., Lahm, M. & McCallister, S. L. New perspectives on the marine carbon cycle–the marine dissolved organic matter reactivity continuum. Environ. Sci. Technol. 56, 5371–5380 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magdziak, D., Meek, S. J. & Pettus, T. R. Cyclohexadienone ketals and quinols: four building blocks potentially useful for enantioselective synthesis. Chem. Rev. 104, 1383–1430 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Tel, T. H. et al. Stereocontrolled transformations of cyclohexadienone derivatives to access stereochemically rich and natural product-inspired architectures. Org. Biomol. Chem. 18, 8526–8571 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huck, C. J., Boyko, Y. D. & Sarlah, D. Dearomative logic in natural product synthesis. Nat. Prod. Rep. 39, 2231–2291 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roche, S. P. & Porco, J. A. Jr. Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. Engl. 50, 4068–4093 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benitez, A. R. et al. Structural basis for selectivity in flavin-dependent monooxygenase-catalyzed oxidative dearomatization. ACS Catal. 9, 3633–3640 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abril, G. et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505, 395–398 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreira-Turcq, P. F., Seyler, P., Guyot, J. L. & Etcheber, H. in Environmental Geochemistry in Tropical and Subtropical Environments (eds de Lacerda, L. D. et al.) 189–204 (Springer, 2004).

  • Sobrinho, R. L. et al. Spatial and seasonal contrasts of sedimentary organic matter in floodplain lakes of the central Amazon basin. Biogeosciences 13, 467–482 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Jezequel, C. et al. A database of freshwater fish species of the Amazon Basin. Sci. Data 7, 96 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardoso, D. et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl Acad. Sci. USA 114, 10695–10700 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos-Junior, C. D., Sarmento, H., de Miranda, F. P., Henrique-Silva, F. & Logares, R. Uncovering the genomic potential of the Amazon River microbiome to degrade rainforest organic matter. Microbiome 8, 151 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidel, M. et al. Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River. Biogeochemistry 131, 281–302 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sawakuchi, H. O. et al. Carbon dioxide emissions along the lower Amazon River. Front. Mar. Sci. 4, 76 (2017).

    Article 

    Google Scholar
     

  • Marinho, T., Filizola, N., Martinez, J.-M., Armijos, E. & Nascimento, A. Suspended sediment variability at the Solimões and Negro confluence between May 2013 and February 2014. Geosciences 8, 265 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Moreira-Turcq, P. F., Seyler, P., Guyot, J. L. & Etcheber, H. Characteristics of organic matter in the mixing zone of the Rio Negro and Rio Solimões of the Amazon River. Hydrol. Process. 17, 1393–1404 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Souza, H. M. L. et al. Polycyclic aromatic hydrocarbons in superficial sediments of the Negro River in the Amazon Region of Brazil. J. Braz. Chem. Soc. 26, 1438–1449 (2015).

    CAS 

    Google Scholar
     

  • Amon, R. M. W. & Benner, R. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochim. Cosmochim. Acta 60, 1783–1792 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, C. D. et al. Variability in organic carbon reactivity across lake residence time and trophic gradients. Nat. Geosci. 10, 832–835 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kellerman, A. M., Dittmar, T., Kothawala, D. N. & Tranvik, L. J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 5, 3804 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kothawala, D. N. et al. Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey. Glob. Change Biol. 20, 1101–1114 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kothawala, D. N. et al. The relative influence of land cover, hydrology, and in‐stream processing on the composition of dissolved organic matter in boreal streams. J. Geophys. Res. Biogeosci. 120, 1491–1505 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gonsior, M. et al. Chemodiversity of dissolved organic matter in the Amazon Basin. Biogeosciences 13, 4279–4290 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Valle, J. et al. Molecular differences between water column and sediment pore water SPE-DOM in ten Swedish boreal lakes. Water Res. 170, 115320 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Comprehensive assessment of dissolved organic matter processing in the Amazon River and its major tributaries revealed by positive and negative electrospray mass spectrometry and NMR spectroscopy. Sci. Total Environ. 857, 159620 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hertkorn, N. et al. Natural organic matter and the event horizon of mass spectrometry. Anal. Chem. 80, 8908–8919 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hertkorn, N., Harir, M., Koch, B. P., Michalke, B. & Schmitt-Kopplin, P. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 10, 1583–1624 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Powers, L. C. et al. Sargassum sp. act as a large regional source of marine dissolved organic carbon and polyphenols. Glob. Biogeochem. Cycles 33, 1423–1439 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lam, B. et al. Major structural components in freshwater dissolved organic matter. Environ. Sci. Technol. 41, 8240–8247 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hertkorn, N. et al. High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems. Anal. Bioanal. Chem. 389, 1311–1327 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das, J. P. & Marek, I. Enantioselective synthesis of all-carbon quaternary stereogenic centers in acyclic systems. Chem. Commun. 47, 4593–4623 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Capponi, M., Gut, I. & Wirz, J. The phenol 2,4-cyclohexadienone equilibrium in aqueous solution. Angew. Chem. Int. Ed. 25, 344–345 (1986).

    Article 

    Google Scholar
     

  • Zhu, L. & Bozzelli, J. W. Kinetics and thermochemistry for the gas-phase keto–enol tautomerism of phenol ↔ 2,4-cyclohexadienone. J. Phys. Chem. A 107, 3696–3703 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Scheer, A. M. et al. Unimolecular thermal decomposition of phenol and d5-phenol: direct observation of cyclopentadiene formation via cyclohexadienone. J. Chem. Phys. 136, 044309 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Quideau, S., Pouységu, L. & Deffieux, D. Oxidative dearomatization of phenols: why, how and what for? Synlett 2008, 467–495 (2008).

    Article 

    Google Scholar
     

  • Fan, R., Ding, Q. & Ye, Y. Recent advances in phenol dearomatization and its application in complex syntheses. Synthesis 45, 1–16 (2012).

    Article 

    Google Scholar
     

  • Willis, N. J. & Bray, C. D. ortho-Quinone methides in natural product synthesis. Chemistry 18, 9160–9173 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, C. & You, S. L. Advances in catalytic asymmetric dearomatization. ACS Cent. Sci. 7, 432–444 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B., He, C.-Y., Chu, W.-D. & Liu, Q.-Z. Recent advances in the asymmetric transformations of achiral cyclohexadienones. Org. Chem. Front. 8, 825–843 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Van De Water, R. W. & Pettus, T. R. R. o-Quinone methides: intermediates underdeveloped and underutilized in organic synthesis. Tetrahedron 58, 5367–5405 (2002).

    Article 

    Google Scholar
     

  • Shen, X., Thach, D. Q., Ting, C. P. & Maimone, T. J. Annulative methods in the synthesis of complex meroterpene natural products. Acc. Chem. Res. 54, 583–594 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandra, G. & Patel, S. Molecular complexity from aromatics: recent advances in the chemistry of paraquinol and masked para-quinone monoketal. ChemistrySelect 5, 12885–12909 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. & Gao, S. Recent advances in the application of Diels–Alder reactions involving o-quinodimethanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis. Chem. Soc. Rev. 47, 7926–7953 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peixoto, P. A. et al. Bispericyclic Diels–Alder dimerization of ortho-quinols in natural product (bio)synthesis: bioinspired chemical 6-step synthesis of (+)-maytenone. Angew. Chem. Int. Ed. Engl. 60, 14967–14974 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You, C., Li, X., Gong, Q., Wen, J. & Zhang, X. Nickel-catalyzed desymmetric hydrogenation of cyclohexadienones: an efficient approach to all-carbon quaternary stereocenters. J. Am. Chem. Soc. 141, 14560–14564 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baker Dockrey, S. A. & Narayan, A. R. H. Photocatalytic oxidative dearomatization of orcinaldehyde derivatives. Org. Lett. 22, 3712–3716 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, Z., Zeng, H. & Li, C. J. Coupling without coupling reactions: en route to developing phenols as sustainable coupling partners via dearomatization–rearomatization processes. Acc. Chem. Res. 53, 2395–2413 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hung, K., Hu, X. & Maimone, T. J. Total synthesis of complex terpenoids employing radical cascade processes. Nat. Prod. Rep. 35, 174–202 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckwith, A. L. J., Easton, C. J. & Serelis, A. K. Some guidelines for radical reactions. J. Chem. Soc. Chem. Commun. 11, 482–483 (1980).

    Article 

    Google Scholar
     

  • Baldwin, J. E. Rules for ring closure. J. Chem. Soc. Chem. Commun. 18, 734–736 (1976).

    Article 

    Google Scholar
     

  • Baker Dockrey, S. A., Lukowski, A. L., Becker, M. R. & Narayan, A. R. H. Biocatalytic site- and enantioselective oxidative dearomatization of phenols. Nat. Chem. 10, 119–125 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dockrey, S. A. B. et al. Positioning-group-enabled biocatalytic oxidative dearomatization. ACS Cent. Sci. 5, 1010–1016 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, S. et al. Strong and confined acids control five stereogenic centers in catalytic asymmetric Diels–Alder reactions of cyclohexadienones with cyclopentadiene. Angew. Chem. Int. Ed. Engl. 59, 12347–12351 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalstabakken, K. A. & Harned, A. M. Asymmetric transformations of achiral 2,5-cyclohexadienones. Tetrahedron 70, 9571–9585 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sib, A. & Gulder, T. A. M. Stereoselective total synthesis of bisorbicillinoid natural products by enzymatic oxidative dearomatization/dimerization. Angew. Chem. Int. Ed. Engl. 56, 12888–12891 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeVault, M. P. et al. Products and mechanisms of secondary organic aerosol formation from the NO3 radical-initiated oxidation of cyclic and acyclic monoterpenes. ACS Earth Space Chem. 6, 2076–2092 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, Q. X., Shi, Y. P. & Jia, Z. J. Eudesmane sesquiterpenoids from the Asteraceae family. Nat. Prod. Rep. 23, 699–734 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wennberg, P. O. et al. Gas-phase reactions of isoprene and its major oxidation products. Chem. Rev. 118, 3337–3390 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Unexpected oligomerization of small α-dicarbonyls for secondary organic aerosol and brown carbon formation. Environ. Sci. Technol. 55, 4430–4439 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonsior, M., Schmitt-Kopplin, P. & Bastviken, D. Depth-dependent molecular composition and photo-reactivity of dissolved organic matter in a boreal lake under winter and summer conditions. Biogeosciences 10, 6945–6956 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xie, H., Zafiriou, O. C., Cai, W. J., Zepp, R. G. & Wang, Y. Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States. Environ. Sci. Technol. 38, 4113–4119 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hertkorn, N. et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 70, 2990–3010 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Neumann, M. G. & Machado, A. E. H. The role of oxygen in the photodegradation of lignin in solution. J. Photochem. Photobiol. B Biol. 3, 473–481 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Crestini, C. & D’Auria, M. Singlet oxygen in the photodegradation of lignin models. Tetrahedron 53, 7877–7888 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Patel, K. F. et al. Reactive oxygen species alter chemical composition and adsorptive fractionation of soil-derived organic matter. Geoderma 384, 114805 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perez, E. H. et al. Structures and chemical rearrangements of benzoate derivatives following gas phase decarboxylation. J. Am. Soc. Mass Spectrom. 33, 1914–1920 (2022).

  • Liu, X. Y. & Qin, Y. Enabling syntheses of diterpenoid alkaloids and related diterpenes by an oxidative dearomatization/Diels–Alder cycloaddition strategy. Nat. Prod. Rep. 34, 1044–1050 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Broek, T. A. B. et al. Dominant heterocyclic composition of dissolved organic nitrogen in the ocean: a new paradigm for cycling and persistence. Proc. Natl Acad. Sci. 150, e2305763120 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, K., Abbt-Braun, G. & Horn, H. Changes in the characteristics of dissolved organic matter during sludge treatment: a critical review. Water Res. 187, 116441 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, Y. Ligand–receptor interaction platforms and their applications for drug discovery. Expert Opin. Drug Discov. 7, 969–988 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gregory, K. J. et al. Identification of specific ligand–receptor interactions that govern binding and cooperativity of diverse modulators to a common metabotropic glutamate receptor 5 allosteric site. ACS Chem. Neurosci. 5, 282–295 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao, N. et al. Unveiling the enigma of refractory carbon in the ocean. Natl Sci. Rev. 5, 459–463 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lechtenfeld, O. J. et al. Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean. Geochim. Cosmochim. Acta 126, 321–337 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. 6, 230–235 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. How representative are dissolved organic matter (DOM) extracts? A comprehensive study of sorbent selectivity for DOM isolation. Water Res. 116, 316–323 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Koehler, B., von Wachenfeldt, E., Kothawala, D. & Tranvik, L. J. Reactivity continuum of dissolved organic carbon decomposition in lake water. J. Geophys. Res. Biogeosci. 117, G01024 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Sørensen, O. W., Madsen, J. C., Nielsen, N. C., Bildsøe, H. & Jakobsen, H. J. An improved refocused INEPT experiment. Application for sensitivity enhancement and spectral editing in 13C NMR. J. Magn. Reson. 77, 170–174 (1988).

    ADS 

    Google Scholar
     

  • Doddrell, D. M., Pegg, D. T. & Bendall, M. R. Distortionless enhancement of NMR signals by polarization transfer. J. Magn. Reson. 48, 323–327 (1982).

    ADS 
    CAS 

    Google Scholar
     

  • Source link