May 4, 2024

Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter – Nature

  • 1.

    Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Moreira, M. Noble gas constraints on the origin and evolution of Earth’s volatiles. Geochem. Perspect. 2, 229–403 (2013).


    Google Scholar
     

  • 5.

    Clay, P. L. et al. Halogens in chondritic meteorites and terrestrial accretion. Nature 551, 614–618 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Ozima, M. & Zashu, S. Solar-type Ne in Zaire cubic diamonds. Geochim. Cosmochim. Acta 52, 19–25 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Ozima, M. & Zashu, S. Noble gas state of the ancient mantle as deduced from noble gases in coated diamonds. Earth Planet. Sci. Lett. 105, 13–27 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Péron, S. & Moreira, M. Onset of volatile recycling into the mantle determined by xenon anomalies. Geochem. Perspect. Lett. 9, 21–25 (2018).


    Google Scholar
     

  • 9.

    Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Broadley, M. W. et al. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proc. Natl Acad. Sci. USA 117, 13997–14004 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Péron, S. et al. Neon isotopic composition of the mantle constrained by single vesicle analyses. Earth Planet. Sci. Lett. 449, 145–154 (2016).

    ADS 

    Google Scholar
     

  • 12.

    Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Kurz, M. D., Curtice, J., Fornari, D., Geist, D. & Moreira, M. Primitive neon from the center of the Galapagos hotspot. Earth Planet. Sci. Lett. 286, 23–34 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Trieloff, M., Kunz, J., Clague, D. A., Harrison, D. & Allègre, C. J. The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Harrison, D., Burnard, P. & Turner, G. Noble gas behaviour and composition in the mantle: constraints from the Iceland Plume. Earth Planet. Sci. Lett. 171, 199–207 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Render, J., Fischer-Gödde, M., Burkhardt, C. & Kleine, T. The cosmic molybdenum–neodymium isotope correlation and the building material of the Earth. Geochem. Perspect. Lett. 3, 170–178 (2017).


    Google Scholar
     

  • 18.

    Akram, W., Schönbächler, M., Bisterzo, S. & Gallino, R. Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the Solar System. Geochim. Cosmochim. Acta 165, 484–500 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    ADS 

    Google Scholar
     

  • 21.

    Marty, B. et al. Xenon isotopes in 67P/Churyumov–Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Harper, C. L. & Jacobsen, S. B. Noble gases and Earth’s accretion. Science 273, 1814–1818 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M. Water delivery and giant impacts in the ‘grand tack’ scenario. Icarus 239, 74–84 (2014).

    ADS 

    Google Scholar
     

  • 24.

    Meshik, A., Hohenberg, C., Pravdivtseva, O. & Burnett, D. Heavy noble gases in solar wind delivered by Genesis mission. Geochim. Cosmochim. Acta 127, 326–347 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Busemann, H., Baur, H. & Wieler, R. Primordial noble gases in ‘Phase Q’ in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949–973 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Yokochi, R. & Marty, B. A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Ballentine, C. J. & Barfod, D. N. The origin of air-like noble gases in MORB and OIB. Earth Planet. Sci. Lett. 180, 39–48 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Caffee, M. W. et al. Primordial noble gases from Earth’s mantle: identification of primitive volatile component. Science 285, 2115–2118 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Bekaert, D. V., Broadley, M. W., Caracausi, A. & Marty, B. Novel insights into the degassing history of Earth’s mantle from high precision noble gas analysis of magmatic gas. Earth Planet. Sci. Lett. 525, 115766 (2019).

    CAS 

    Google Scholar
     

  • 33.

    Parai, R. & Mukhopadhyay, S. The evolution of MORB and plume mantle volatile budgets: constraints from fission Xe isotopes in Southwest Indian Ridge basalts. Geochem. Geophys. Geosyst. 16, 719–735 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Busemann, H. & Eugster, O. The trapped noble gas component in achondrites. Meteorit. Planet. Sci. 37, 1865–1891 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Broadley, M. W., Bekaert, D. V., Marty, B., Yamaguchi, A. & Barrat, J.-A. Noble gas variations in ureilites and their implications for ureilite parent body formation. Geochim. Cosmochim. Acta 270, 325–337 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Pető, M. K., Mukhopadhyay, S. & Kelley, K. A. Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth Planet. Sci. Lett. 369–370, 13–23 (2013).

    ADS 

    Google Scholar
     

  • 37.

    Ott, U., Begemann, F., Yang, J. & Epstein, S. S-process krypton of variable isotopic composition in the Murchison meteorite. Nature 332, 700–702 (1988).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Lewis, R. S., Amari, S. & Anders, E. Interstellar grains in meteorites: II. SiC and its noble gases. Geochim. Cosmochim. Acta 58, 471–494 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Pepin, R. O. & Porcelli, D. Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth Planet. Sci. Lett. 250, 470–485 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Carlson, R. W. et al. How did early Earth become our modern world? Annu. Rev. Earth Planet. Sci. 42, 151–178 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Rubin, M. et al. Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov–Gerasimenko. Sci. Adv. 4, eaar6297 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Mazor, E., Heymann, D. & Anders, E. Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 781–824 (1970).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Heber, V. S. et al. Noble gas composition of the solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 73, 7414–7432 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Lock, S. J. & Stewart, S. T. The structure of terrestrial bodies: Impact heating, corotation limits, and synestias. J. Geophys. Res. Planets 122, 950–982 (2017).

    ADS 

    Google Scholar
     

  • 48.

    Bekaert, D. V., Broadley, M. W. & Marty, B. The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov–Gerasimenko. Sci. Rep. 10, 5796 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Ciesla, F. J. & Cuzzi, J. N. The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006).

    ADS 

    Google Scholar
     

  • 50.

    Raymond, S. N. & Izidoro, A. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017).

    ADS 

    Google Scholar
     

  • 51.

    Geist, D. et al. Submarine Fernandina: magmatism at the leading edge of the Galapagos hot spot. Geochem. Geophys. Geosyst. 7, Q12007 (2006).

    ADS 

    Google Scholar
     

  • 52.

    Peterson, M. E. et al. Submarine basaltic glasses from the Galapagos Archipelago: determining the volatile budget of the mantle plume. J. Petrol. 58, 1419–1450 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Graham, D. W., Hanan, B. B., Hémond, C., Blichert‐Toft, J. & Albarède, F. Helium isotopic textures in Earth’s upper mantle. Geochem. Geophys. Geosyst. 15, 2048–2074 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Colin, A., Moreira, M., Gautheron, C. & Burnard, P. Constraints on the noble gas composition of the deep mantle by bubble-by-bubble analysis of a volcanic glass sample from Iceland. Chem. Geol. 417, 173–183 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 55.

    Péron, S., Mukhopadhyay, S. & Huh, M. A new dual stainless steel cryogenic trap for efficient separation of krypton from argon and xenon. J. Analyt. At. Spectrom. 35, 2663–2671 (2020).


    Google Scholar
     

  • 56.

    Lott, D. E. III Improvements in noble gas separation methodology: a nude cryogenic trap. Geochem. Geophys. Geosyst. 2, 1068 (2001).

    ADS 

    Google Scholar
     

  • 57.

    Stanley, R. H. R., Baschek, B., Lott, D. E. III & Jenkins, W. J. A new automated method for measuring noble gases and their isotopic ratios in water samples. Geochem. Geophys. Geosyst. 10, Q05008 (2009).

    ADS 

    Google Scholar
     

  • 58.

    Kunz, J., Staudacher, T. & Allègre, C. J. Plutonium-fission xenon found in Earth’s mantle. Science 280, 877–880 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Moreira, M., Kunz, J. & Allègre, C. J. Rare gas systematics on popping rock: estimates of isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Parai, R. & Mukhopadhyay, S. Heavy noble gas signatures of the North Atlantic Popping Rock 2ΠD43: implications for mantle noble gas heterogeneity. Geochim. Cosmochim. Acta 294, 89–105 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Tucker, J. M., Mukhopadhyay, S. & Schilling, J.-G. The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet. Sci. Lett. 355–356, 244–254 (2012).

    ADS 

    Google Scholar
     

  • 62.

    Parai, R., Mukhopadhyay, S. & Standish, J. J. Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge. Earth Planet. Sci. Lett. 359–360, 227–239 (2012).

    ADS 

    Google Scholar
     

  • 63.

    Moreira, M., Rouchon, V., Muller, E. & Noirez, S. The xenon isotopic signature of the mantle beneath Massif Central. Geochem. Perspect. Lett. 6, 28–32 (2018).


    Google Scholar
     

  • 64.

    Ozima, M. & Podosek, F. A. Noble Gas Geochemistry (Cambridge Univ. Press, 2002).

  • 65.

    Huss, G. R. & Lewis, R. S. Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta 59, 115–160 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Pepin, R. O. On noble gas processing in the solar accretion disk. Space Sci. Rev. 106, 211–230 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 67.

    Eugster, O., Eberhardt, P. & Geiss, J. Krypton and xenon isotopic composition in three carbonaceous chondrites. Earth Planet. Sci. Lett. 3, 249–257 (1967).

    ADS 
    CAS 

    Google Scholar
     

  • 68.

    Marti, K. Isotopic composition of trapped krypton and xenon in chondrites. Earth Planet. Sci. Lett. 3, 243–248 (1967).

    ADS 
    CAS 

    Google Scholar
     

  • 69.

    Manuel, O. K., Wright, R. J., Miller, D. K. & Kuroda, P. K. Heavy noble gases in Leoville: The case for mass fractionated xenon in carbonaceous chondrites. J. Geophys. Res. 75, 5693–5701 (1970).

    ADS 

    Google Scholar
     

  • 70.

    Krummenacher, D., Merrihue, C. M., Pepin, R. O. & Reynolds, J. H. Meteoritic krypton and barium versus the general isotopic anomalies in meteoritic xenon. Geochim. Cosmochim. Acta 26, 231–249 (1962).

    ADS 
    CAS 

    Google Scholar
     

  • 71.

    Manuel, O. K., Wright, R. J., Miller, D. K. & Kuroda, P. K. Isotopic compositions of rare gases in the carbonacaous chondrites Mokoia and Allende. Geochim. Cosmochim. Acta 36, 961–983 (1972).

    ADS 
    CAS 

    Google Scholar
     

  • 72.

    Matsuda, J.-I., Lewis, R. S., Takahashi, H. & Anders, E. Isotopic anomalies of noble gases in meteorites and their origins—VII. C3V carbonaceous chondrites. Geochim. Cosmochim. Acta 44, 1861–1874 (1980).

    ADS 
    CAS 

    Google Scholar
     

  • 73.

    Basford, J. R., Dragon, J. C., Pepin, R. O., Coscio, M. R. Jr & Murthy, V. R. Krypton and xenon in lunar fines. Lunar Planet. Sci. Proc. 4, 1915–1955 (1973).

    ADS 

    Google Scholar
     

  • 74.

    Nier, A. O. A redetermination of the relative abundances of the isotopes of neon, krypton, rubidium, xenon and mercury. Phys. Rev. 79, 450–454 (1950).

    ADS 
    CAS 

    Google Scholar
     

  • 75.

    Nief, G. Isotopic Abundance Ratios Given for Reference Samples Stocked by the National Bureau of Standards (ed. Mohler, F.) NBS Technical Note 51 (National Bureau of Standards, 1960).

  • 76.

    Eugster, O., Eberhardt, P. & Geiss, J. The isotopic composition of krypton in unequilibrated and gas rich chondrites. Earth Planet. Sci. Lett. 2, 385–393 (1967).

    ADS 
    CAS 

    Google Scholar
     

  • 77.

    Marti, K., Eberhardt, P. & Geiss, J. Spallation, fission, and neutron capture anomalies in meteoritic krypton and xenon. Z. Naturforsch. A 21, 398–426 (1966).

    ADS 
    CAS 

    Google Scholar
     

  • 78.

    Eugster, O. Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr–Kr exposure ages. Geochim. Cosmochim. Acta 52, 1649–1662 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 79.

    Wieler, R. Cosmic-ray-produced noble gases in meteorites. Rev. Mineral. Geochem. 47, 125–170 (2002).

    CAS 

    Google Scholar
     

  • 80.

    Eugster, O., Eberhardt, P. & Geiss, J. Isotopic analyses of krypton and xenon in fourteen stone meteorites. J. Geophys. Res. 74, 3874–3896 (1969).

    ADS 
    CAS 

    Google Scholar
     

  • 81.

    Nakashima, D. & Nakamura, T. Trapped noble gas components and exposure history of the enstatite chondrite ALH84206. Geochem. J. 40, 543–555 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 82.

    Okazaki, R., Takaoka, N., Nagao, K. & Nakamura, T. Noble gases in enstatite chondrites released by stepped crushing and heating. Meteorit. Planet. Sci. 45, 339–360 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 83.

    Heber, V. S. et al. Isotopic fractionation of solar wind: evidence from fast and slow solar wind collected by the Genesis Mission. Astrophys. J. 759, 121–133 (2012).

    ADS 

    Google Scholar
     

  • 84.

    Pepin, R. O., Schlutter, D. J., Becker, R. H. & Reisenfeld, D. B. Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochim. Cosmochim. Acta 89, 62–80 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Source link