May 8, 2024
Dendrite initiation and propagation in lithium metal solid-state batteries – Nature

Dendrite initiation and propagation in lithium metal solid-state batteries – Nature

  • Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feldman, L. A. & De Jonghe, L. C. Initiation of mode I degradation in sodium-beta alumina electrolytes. J. Mater. Sci. 17, 517–524 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article 

    Google Scholar
     

  • Bucci, G. & Christensen, J. Modeling of lithium electrodeposition at the lithium/ceramic electrolyte interface: the role of interfacial resistance and surface defects. J. Power Sources 441, 227186 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Klinsmann, M., Hildebrand, F. E., Ganser, M. & McMeeking, R. M. Dendritic cracking in solid electrolytes driven by lithium insertion. J. Power Sources 442, 227226 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Barroso-Luque, L., Tu, Q. & Ceder, G. An analysis of solid-state electrodeposition-induced metal plastic flow and predictions of stress states in solid ionic conductor defects. J. Electrochem. Soc. 167, 20534 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, L. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koç, T., Marchini, F., Rousse, G., Dugas, R. & Tarascon, J.-M. In search of the best solid electrolyte-layered oxide pairing for assembling practical all-solid-state batteries. ACS Appl. Energy Mater. 4, 13575–13585 (2021).

    Article 

    Google Scholar
     

  • Liang, J. et al. A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 12, 2103921 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tu, Q., Shi, T., Chakravarthy, S. & Ceder, G. Understanding metal propagation in solid electrolytes due to mixed ionic-electronic conduction. Matter 4, 3248–3268 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kazyak, E. et al. Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter 2, 1025–1048 (2020).

    Article 

    Google Scholar
     

  • Scharf, J. et al. Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence. Nat. Nanotechnol. 17, 446–459 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • De Jonghe, L. C., Feldman, L. & Beuchele, A. Slow degradation and electron conduction in sodium/beta-aluminas. J. Mater. Sci. 16, 780–786 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Masias, A., Felten, N., Garcia-Mendez, R., Wolfenstine, J. & Sakamoto, J. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sedlatschek, T. et al. Large-deformation plasticity and fracture behavior of pure lithium under various stress states. Acta Mater. 208, 116730 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Doltsinis, I. & Dattke, R. Modelling the damage of porous ceramics under internal pressure. Comput. Methods Appl. Mech. Eng. 191, 29–46 (2001).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Foulk, J. W. III, Johnson, G. C., Klein, P. A. & Ritchie, R. O. On the toughening of brittle materials by grain bridging: promoting intergranular fracture through grain angle, strength, and toughness. J. Mech. Phys. Solids 56, 2381–2400 (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Fricker, H. S. Why does charge concentrate on points? Phys. Educ. 24 157 (1989). 

    Article 
    ADS 

    Google Scholar
     

  • Liu, G. et al. Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all-solid-state lithium batteries. Nano Lett. 20, 6660–6665 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Begley, J. A. & Landes, J. D. in Proc. 1971 National Symposium on Fracture Mechanics—Part II, ASTM STP 514 1–20 (ASTM, 1972).

  • Huang, Z. & Li, X. Origin of flaw-tolerance in nacre. Sci. Rep. 3, 1693 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinzer, B. et al. Operando analysis of the molten Li|LLZO interface: understanding how the physical properties of Li affect the critical current density. Matter 4, 1947–1961 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. A. et al. Role of areal capacity in determining short circuiting of sulfide-based solid-state batteries. ACS Appl. Mater. Interfaces 14, 4051–4060 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hänsel, C. & Kundu, D. The stack pressure dilemma in sulfide electrolyte based Li metal solid-state batteries: a case study with Li6PS5Cl solid electrolyte. Adv. Mater. Interfaces 8, 2100206 (2021).

    Article 

    Google Scholar
     

  • Doux, J.-M. et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 10, 1903253 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Haslam, C. G., Wolfenstine, J. B. & Sakamoto, J. The effect of aspect ratio on the mechanical behavior of Li metal in solid-state cells. J. Power Sources 520, 230831 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Otto, S.-K. et al. In situ investigation of lithium metal–solid electrolyte anode interfaces with ToF-SIMS. Adv. Mater. Interfaces 9, 2102387 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Baranowski, L. L., Heveran, C. M., Ferguson, V. L. & Stoldt, C. R. Multi-scale mechanical behavior of the Li3PS4 solid-phase electrolyte. ACS Appl. Mater. Interfaces 8, 29573–29579 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, T., Feng, Y., Yang, R. & Jiang, P. A method to determine fracture toughness using cube-corner indentation. Scr. Mater. 62, 199–201 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cuadrado, N., Casellas, D., Anglada, M. & Jiménez-Piqué, E. Evaluation of fracture toughness of small volumes by means of cube-corner nanoindentation. Scr. Mater. 66, 670–673 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Di Maio, D. & Roberts, S. G. Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J. Mater. Res. 20, 299–302 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. et al. Measurements of elastic modulus and fracture toughness of an air plasma sprayed thermal barrier coating using micro-cantilever bending. Surf. Coat. Technol. 374, 12–20 (2019).

    Article 

    Google Scholar
     

  • Source link