May 28, 2024

Designing the next generation of proton-exchange membrane fuel cells – Nature

  • 1.

    Jewell, J. et al. Limited emission reductions from fuel subsidy removal except in energy-exporting regions. Nature 554, 229–233 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).

    CAS 

    Google Scholar
     

  • 3.

    Itaoka, K., Saito, A. & Sasaki, K. Public perception on hydrogen infrastructure in Japan: Influence of rollout of commercial fuel cell vehicles. Int. J. Hydrogen Energy 42, 7290–7296 (2017).

    CAS 

    Google Scholar
     

  • 4.

    Eberle, U., Müller, B. & Helmolt, R. Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy Environ. Sci. 5, 8780–8798 (2012).


    Google Scholar
     

  • 5.

    Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).

    ADS 

    Google Scholar
     

  • 6.

    Gröger, O., Gasteiger, H. A. & Suchsland, J. P. Electromobility: batteries or fuel cells? J. Electrochem. Soc. 162, A2605–A2622 (2015). This review compares batteries and fuel cells for automotive applications, suggesting that the high energy density of fuel cells makes them suitable for heavy-duty and long-distance transportation.


    Google Scholar
     

  • 7.

    Hu, X. et al. Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives. Pror. Energy Combust. Sci. 77, 100806 (2020).


    Google Scholar
     

  • 8.

    Introducing the all-new Toyota MIRAI. Toyota Europe Newsroom https://newsroom.toyota.eu/introducing-the-all-new-toyota-MIRAI/ (2020).

  • 9.

    Wilson, A., Kleen, G. & Papageorgopoulos, D. Fuel Cell System Cost–2017. DOE Hydrogen and Fuel Cells Program Record 17007. https://www.hydrogen.energy.gov/pdfs/17007_fuel_cell_system_cost_2017.pdf (DOE Fuel Cell Technologies Office, 2017).

  • 10.

    Wang, Y. et al. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy AI 1, 100014 (2020).


    Google Scholar
     

  • 11.

    Frendo, O. et al. Data-driven smart charging for heterogeneous electric vehicle fleets. Energy AI 1, 100007 (2020).


    Google Scholar
     

  • 12.

    Jin, D. & Jiao, K. Charging infrastructure intellectualization and future of different automotive powertrains. Joule 4, 1634–1636 (2020).


    Google Scholar
     

  • 13.

    Harrison, M. Toyota electrification strategy in Europe today and tomorrow. Toyota Motor Europe https://www.autonews.com/assets/pdf/ane-congress/presentations2019/matthew_harrison.pdf (2019).

  • 14.

    Full specs of Toyota MIRAI 2021. Toyota USA https://www.toyota.com/MIRAI/features/mileage_estimates/3002/3003 (2020).

  • 15.

    Konno, N., Mizuno, S. & Nakaji, H. Development of compact and high-performance fuel cell stack. SAE Mobilus 4, 123–129 (2015).


    Google Scholar
     

  • 16.

    Amamiya, I. & Tanaka, S. Current topics proposed by PEFC manufacturers, etc. – current status and topics of fuel cells for FCV. In Hydrogen, Fuel Cell Project Evaluation, and Issue Sharing Week (Japan New Energy and Industrial Technology Development Organization, 2019); available at https://www.nedo.go.jp/content/100895101.pdf (in Japanese).

  • 17.

    Volume manufacturing of PEM FC stacks for transportation and in-line quality assurance (European Commission, 2019); https://cordis.europa.eu/project/id/671465

  • 18.

    Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU). 2019 annual work plan and budget (FCH 2 JU, 2018); https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-wp19-fch_en.pdf

  • 19.

    Ozden, A., Shahgaldi, S., Li, X. & Hamdullahpur, F. A review of gas diffusion layers for proton exchange membrane fuel cells – with a focus on characteristics, characterization techniques, materials and designs. Pror. Energy Combust. Sci. 74, 50–102 (2019).


    Google Scholar
     

  • 20.

    Gerteisen, D. & Sadeler, C. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by a laser perforation of gas diffusion layers. J. Power Sources 195, 5252–5257 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Tian, X. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Chong, L. et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016). This study achieves high specific and mass activity using ultrafine jagged platinum nanowires for oxygen reduction, suggesting a promising approach to realizing high-current-density fuel cells.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Huang, X. et al. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Ott, S. et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19, 77–85 (2020). This study shows that N-doped carbon supports can improve ionomer distribution in the catalyst layer, providing an important path to next-generation high-power-density fuel cells.

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Yarlagadda, V. et al. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3, 618–621 (2018).

    CAS 

    Google Scholar
     

  • 28.

    Poojary, S., Islam, M. N., Shrivastava, U. N., Roberts, E. P. L. & Karan, K. Transport and electrochemical interface properties of ionomers in low-Pt loading catalyst layers: effect of ionomer equivalent weight and relative humidity. Molecules 25, 3387 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Yoon, K. R. et al. Mussel-inspired polydopamine-treated reinforced composite membranes with self-supported CeOx radical scavengers for highly stable PEM fuel cells. Adv. Funct. Mater. 29, 1806929 (2019).


    Google Scholar
     

  • 30.

    Park, C. H. et al. Nanocrack-regulated self-humidifying membranes. Nature 532, 480–483 (2016). This study develops self-humidifying membranes with surface nanocrack coatings, providing an alternative solution for membranes that tolerate low-humidity conditions.

    ADS 

    Google Scholar
     

  • 31.

    Liu, X. et al. Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nat. Commun. 10, 842 (2019). This study develops composite membranes with through-plane-aligned proton channels, showing that thus oriented channels improve proton conductivity and durability, and that microporous channels strongly retain water.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Tanaka, S., Bradfield, W. W., Legrand, C. & Malan, A. G. Numerical and experimental study of the effects of the electrical resistance and diffusivity under clamping pressure on the performance of a metallic gas-diffusion layer in polymer electrolyte fuel cells. J. Power Sources 330, 273–284 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Tanaka, S. & Shudo, T. Corrugated mesh flow channel and novel microporous layers for reducing flooding and resistance in gas diffusion layer-less polymer electrolyte fuel cells. J. Power Sources 268, 183–193 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Lee, J., Hinebaugh, J. & Bazylak, A. Synchrotron X-ray radiographic investigations of liquid water transport behavior in a PEMFC with MPL-coated GDLs. J. Power Sources 227, 123–130 (2013).

    CAS 

    Google Scholar
     

  • 35.

    Li, D. et al. Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy Environ. Sci. 7, 4061–4069 (2014).

    CAS 

    Google Scholar
     

  • 36.

    Karan, K. PEFC catalyst layer: recent advances in materials, microstructural characterization, and modeling. Curr. Opin. Electrochem. 5, 27–35 (2017).

    CAS 

    Google Scholar
     

  • 37.

    Kim, Y. S. & Pivovar, B. S. The membrane–electrode interface in PEFCs. J. Electrochem. Soc. 157, B1616 (2010).

    CAS 

    Google Scholar
     

  • 38.

    Holdcroft, S. Fuel cell catalyst layers: a polymer science perspective. Chem. Mater. 26, 381–393 (2014).

    CAS 

    Google Scholar
     

  • 39.

    Yin, Y. et al. Ionomer migration within PEMFC catalyst layers induced by humidity changes. Electrochem. Commun. 109, 106590 (2019).

    CAS 

    Google Scholar
     

  • 40.

    Crowtz, T. C. & Dahn, J. R. Screening bifunctional Pt based NSTF catalysts for durability with the rotating disk electrode: The effect of Ir and Ru. J. Electrochem. Soc. 165, F854–F862 (2018).

    CAS 

    Google Scholar
     

  • 41.

    Steinbach, A. J. et al. Ultrathin film NSTF ORR electrocatalysts for PEM fuel cells. ECS Trans. 80, 659–676 (2017).

    CAS 

    Google Scholar
     

  • 42.

    Steinbach, A. Final Technical Report for Project Entitled Highly Active, Durable, and Ultra-Low PGM NSTF Thin Film ORR Catalysts and Support. Technical Report DOE-3M-0007270 (US Department of Energy, 2020).

  • 43.

    Murata, S., Imanishi, M., Hasegawa, S. & Namba, R. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells. J. Power Sources 253, 104–113 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Kraytsberg, A. & Ein-Eli, Y. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28, 7303–7330 (2014).

    CAS 

    Google Scholar
     

  • 45.

    Wang, Y., Ruiz Diaz, D. F., Chen, K. S., Wang, Z. & Adroher, X. C. Materials, technological status, and fundamentals of PEM fuel cells – A review. Mater. Today 32, 178–203 (2020).

    CAS 

    Google Scholar
     

  • 46.

    Zamel, N. & Li, X. Effect of contaminants on polymer electrolyte membrane fuel cells. Pror. Energy Combust. Sci. 37, 292–329 (2011).

    CAS 

    Google Scholar
     

  • 47.

    Kinumoto, T. et al. Durability of perfluorinated ionomer membrane against hydrogen peroxide. J. Power Sources 158, 1222–1228 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Pearman, B. P. et al. The chemical behavior and degradation mitigation effect of cerium oxide nanoparticles in perfluorosulfonic acid polymer electrolyte membranes. Polym. Degrad. Stabil. 98, 1766–1772 (2013).

    CAS 

    Google Scholar
     

  • 49.

    Durante, V. A. & Delaney, W. E. Highly stable fuel cell membranes and methods of making them. US patent 7,989,115 B2 (2011).

  • 50.

    Zaidi, S. M. J., Mikhailenko, S. D., Robertson, G. P., Guiver, M. D. & Kaliaguine, S. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Membr. Sci. 173, 17–34 (2000).

    CAS 

    Google Scholar
     

  • 51.

    Miyatake, K., Chikashige, Y., Higuchi, E. & Watanabe, M. Tuned Polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. J. Am. Chem. Soc. 129, 3879–3887 (2007).

    CAS 

    Google Scholar
     

  • 52.

    Yin, Y. et al. Synthesis and properties of highly sulfonated proton conducting polyimides from bis(3-sulfopropoxy)benzidine diamines. J. Mater. Chem. 14, 1062–1070 (2004).

    CAS 

    Google Scholar
     

  • 53.

    Wu, S. et al. The direct synthesis of wholly aromatic poly(p-phenylene)s bearing sulfobenzoyl side groups as proton exchange membranes. Polymer 47, 6993–7000 (2006).

    CAS 

    Google Scholar
     

  • 54.

    Rikukawa, M. & Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 25, 1463–1502 (2000).

    CAS 

    Google Scholar
     

  • 55.

    Smitha, B., Sridhar, S. & Khan, A. A. Solid polymer electrolyte membranes for fuel cell applications—a review. J. Membr. Sci. 259, 10–26 (2005).

    CAS 

    Google Scholar
     

  • 56.

    Miyake, J. et al. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells. Sci. Adv. 3, eaao0476 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Kang, N. R., Pham, T. H. & Jannasch, P. Polyaromatic perfluorophenylsulfonic acids with high radical resistance and proton conductivity. ACS Macro Lett. 8, 1247–1251 (2019).

    CAS 

    Google Scholar
     

  • 58.

    Adamski, M. et al. Molecular branching as a simple approach to improving polymer electrolyte membranes. J. Membr. Sci. 595, 117539 (2020).

    CAS 

    Google Scholar
     

  • 59.

    Lee, K.-S., Spendelow, J. S., Choe, Y.-K., Fujimoto, C. & Kim, Y. S. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs. Nat. Energy 1, 16120 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Lee, S. Y. et al. Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide nitrile) random copolymer. Energy Environ. Sci. 5, 9795–9802 (2012).

    CAS 

    Google Scholar
     

  • 61.

    Liu, X. et al. Oriented proton-conductive nano-sponge-facilitated polymer electrolyte membranes. Energy Environ. Sci. 13, 297–309 (2020).

    CAS 

    Google Scholar
     

  • 62.

    Zhang, X. et al. A paradigm shift for a new class of proton exchange membranes with ferrocyanide proton-conducting groups providing enhanced oxidative stability. J. Membr. Sci. 616, 118536 (2020).

    CAS 

    Google Scholar
     

  • 63.

    Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Taherian, R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: materials, fabrication, and material selection. J. Power Sources 265, 370–390 (2014); retraction 265, 370–390 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Office of Energy Efficiency & Renewable Energy. DOE Technical targets for polymer electrolyte membrane fuel cell components https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components#bipolarplate (accessed 3 July 2021).

  • 66.

    Wang, C. & Cullen, D. A. Novel structured metal bipolar plates for low cost manufacturing https://www.hydrogen.energy.gov/pdfs/review20/fc105_wang_2020_p.pdf (TreadStone Technologies Inc., 2020).

  • 67.

    James, B. D., Huya-Kouadio, J. M., Houchins, C. & DeSantis, D. A. Mass production cost estimation of direct H2 PEM fuel cell systems for transportation applications: 2018 update https://www.energy.gov/sites/default/files/2020/02/f71/fcto-sa-2018-transportation-fuel-cell-cost-analysis-2.pdf (Strateg. Anal. Inc., 2018).This study evaluates the manufacturing cost of fuel cells from individual components to transportation systems. The paper supports the discussion on bipolar plates presented in this Perspective.

  • 68.

    Adrianowycz, O. et al. Next Generation Bipolar Plates for Automotive PEM Fuel Cells. Report DE-FC36-07GO17012 (Office of Scientific & Technical Information, 2010); https://digital.library.unt.edu/ark:/67531/metadc927369/

  • 69.

    Saito, N., Kikuchi, H. & Nakao, Y. New Fuel Cell Stack for FCX Clarity. Honda R&D Technical Review 21, 1 (Honda, 2009).

  • 70.

    Inoue, M., Saito, N. & Uchibori, K. Next-Generation Fuel Cell Stack for Honda FCX. Honda R&D Technical Review 17, 2 (Honda, 2005).

  • 71.

    Kikuchi, H., Kaji, H., Nishiyama, T., Okonogi, D. & Harata, H. Development of New FC Stack for Clarity Fuel Cell. Honda R&D Technical Review 28, 2 (Honda, 2016).

  • 72.

    Kimura, Y., Oyama, S., Giga, A. & Okonogi, D. Development of New FC Separator for Clarity Fuel Cell. Honda R&D Technical Review 29, 2 (Honda, 2017).

  • 73.

    Wilberforce, T. et al. A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renew. Sustain. Energy Rev. 111, 236–260 (2019).

    CAS 

    Google Scholar
     

  • 74.

    Dubau, L. et al. A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies. WIREs Energy Environ. 3, 540–560 (2014).

    CAS 

    Google Scholar
     

  • 75.

    Jiao, K. & Li, X. Water transport in polymer electrolyte membrane fuel cells. Pror. Energy Combust. Sci. 37, 221–291 (2011).

    CAS 

    Google Scholar
     

  • 76.

    Zhang, G. & Kandlikar, S. G. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int. J. Hydrogen Energy 37, 2412–2429 (2012).

    CAS 

    Google Scholar
     

  • 77.

    Khandelwal, M. & Mench, M. M. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell material. J. Power Sources 161, 1106–1115 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 78.

    Antunes, R. A., Oliveira, M. C. L., Ett, G. & Ett, V. Corrosion of metal bipolar plates for PEM fuel cells: a review. Int. J. Hydrogen Energy 35, 3632–3647 (2010).

    CAS 

    Google Scholar
     

  • 79.

    Saiki, K. Strength Design Method of Metallic Separator for Fuel Cell. Honda R&D Technical Review 29, 1 (Honda, 2017).

  • 80.

    Norley, J. Graphite-based bipolar plates for PEM motive fuel cell applications. In DOE Bipolar Plates Workshop (GrafTech Int. Holdings Ltd, 2017); https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_biploar_plates_wkshp_norley.pdf

  • 81.

    Wu, J. et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184, 104–119 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 82.

    Wang, Y. Porous-media flow fields for polymer electrolyte fuel cells. J. Electrochem. Soc. 156, B1124 (2009).

    CAS 

    Google Scholar
     

  • 83.

    Srouji, A. K., Zheng, L. J., Dross, R., Turhan, A. & Mench, M. M. Ultra-high current density water management in polymer electrolyte fuel cell with porous metallic flow field. J. Power Sources 239, 433–442 (2013).

    CAS 

    Google Scholar
     

  • 84.

    Yuan, W., Tang, Y., Yang, X. & Wan, Z. Porous metal materials for polymer electrolyte membrane fuel cells – a review. Appl. Energy 94, 309–329 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 85.

    Park, J. E. et al. Gas diffusion layer/flow-field unified membrane-electrode assembly in fuel cell using graphene foam. Electrochim. Acta 323, 134808 (2019). This study proposes an integrated design of the gas diffusion layer and flow field with boosted fuel cell performance, demonstrating that such a design is promising for increasing the power density.

    CAS 

    Google Scholar
     

  • Source link