May 23, 2024

Dexterous magnetic manipulation of conductive non-magnetic objects – Nature

  • 1.

    Abbott, J. J., Diller, E. & Petruska, A. J. Magnetic methods in robotics. Annu. Rev. Control Robot. Auton. Syst. 3, 57–90 (2020).

    Article 

    Google Scholar
     

  • 2.

    Hertz, H. Miscellaneous Papers Chapter 2 [transl. Jones, D. E. & Schott, G. A.] (Macmillan, 1896).

  • 3.

    Griffiths, D. J. Introduction to Electrodynamics 4th edition (Cambridge Univ. Press, 2017).

  • 4.

    Nagel, J. R. Induced eddy currents in simple conductive geometries: mathematical formalism describes the excitation of electrical eddy currents in a time-varying magnetic field. IEEE Antennas Propag. Mag. 3, 81–88 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Youngquist, R. C., Nurge, M. A., Starr, S. O., Leve, F. A. & Peck, M. A. A slowly rotating hollow sphere in a magnetic field: first steps to de-spin a space object. Am. J. Phys. 84, 181–191 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Nurge, M. A., Youngquist, R. C. & Starr, S. O. A thick-walled sphere rotating in a uniform magnetic field: the next step to de-spin a space object. Am. J. Phys. 85, 596–610 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Nurge, M. A., Youngquist, R. C. & Starr, S. O. Drag and lift forces between a rotating conductive sphere and a cylinderical magnet. Am. J. Phys. 86, 443–452 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Sharma, K. K. et al. Space debris reduction using eddy currents. In 2018 Atmospheric Flight Mechanics Conf., 3161 (American Institute of Aeronautics and Astronautics, 2018).

  • 9.

    Reinhardt, B. Z. & Peck, M. A. New electromagnetic actuator for on-orbit inspection. J. Spacecraft Rockets 53, 241–248 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Liu, X., Lu, Y., Zhou, Y. & Yin, Y. Prospects of using a permanent mangetic end effector to despin and detumble an uncooperative target. Adv. Space Res. 61, 2147–2158 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Smith, Y. R., Nagel, J. R. & Rajamani, R. K. Eddy current seperation for recovery of non-ferrous metallic particles: a comprehensive review. Miner. Eng. 133, 149–159 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Buckingham, E. On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4, 345 (1914).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Shan, M., Guo, J. & Gill, E. Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18–32 (2016).

    Article 

    Google Scholar
     

  • 14.

    Mark, C. P. & Kamath, S. Review of active space debris removal methods. Space Policy 47, 194–206 (2019).

    Article 

    Google Scholar
     

  • 15.

    Kessler, D. J., Johnson, N. L., Liou J. C. & Matney, M. The Kessler syndrome: implications to future space operations. Adv. Astronaut. Sci. 137, AAS 10-016 (2010).

  • 16.

    Opiela, J. N. A study of the material density distribution of space debris. Adv. Space Res. 43, 1058–1064 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Pelrine, R. et al. Diamagnetically levitated robots: an approach to massively parallel robotic systems with unusual motion properties. IEEE Int. Conf. Robotics and Automation, 739–744 (2012).

  • 18.

    Mirica, K. A., Ilievski, F., Ellerbee, A. K., Shevkoplyas, S. S. & Whitesides, G. M. Using magnetic levitation for three dimensional self-assembly. Adv. Mater. 23, 4134–4140 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Petruska, A. J. & Abbott, J. J. Omnimagnet: an omnidirectional electromagnet for controlled dipole-field generation. IEEE Trans. Magn. 50, 8400410 (2014).

    Article 

    Google Scholar
     

  • 20.

    Wright, S. E., Mahoney, A. W., Popek, K. M. & Abbott, J. J. The spherical-actuator-magnet manipulator: a permanent-magnet robotic end-effector. IEEE Trans. Robot. 33, 1013–2924 (2017).

    Article 

    Google Scholar
     

  • 21.

    Petruska, A. J. & Abbott, J. J. Optimal permanent-magnet geometries for dipole field approximation. IEEE Trans. Magn. 49, 811–819 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Lynch, K. M. & Park, F. C. Modern Robotics: Mechanics, Planning, and Control (Cambridge Univ. Press, 2017).

  • 23.

    Diller, E., Giltinan, J., Lum, G. Z., Ye, Z. & Sitti, M. Six-degree-of-freedom magnetic actuation for wireless microrobotics. Int. J. Robot. Res. 35, 114–128 (2016).

    Article 

    Google Scholar
     

  • 24.

    Kummer, M. P. et al. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26, 1006–1017 (2010).

    Article 

    Google Scholar
     

  • 25.

    Petruska, A. J. & Nelson, B. J. Minimum bounds on the number of electromagnets required for remote magnetic manipulation. IEEE Trans. Robot. 31, 714–722 (2015).

    Article 

    Google Scholar
     

  • 26.

    Ryan, P. & Diller, E. Magnetic actuation for full dexterity microrobotic control using rotating permanent magnets. IEEE Trans. Robot. 33, 1398–1409 (2017).

    Article 

    Google Scholar
     

  • Source link