May 4, 2024
Differential clock comparisons with a multiplexed optical lattice clock – Nature

Differential clock comparisons with a multiplexed optical lattice clock – Nature

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Schioppo, M. et al. Ultrastable optical clock with two cold-atom ensembles. Nat. Photon. 11, 48–52 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).

    ADS 

    Google Scholar
     

  • Stadnik, Y. V. & Flambaum, V. V. Improved limits on interactions of low-mass spin-0 dark matter from atomic clock. spectroscopy. Phys. Rev. A 94, 022111 (2016).

    ADS 

    Google Scholar
     

  • Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).

    CAS 

    Google Scholar
     

  • Arvanitaki, A., Huang, J. W. & Van Tilburg, K. Searching for dilaton dark matter with atomic clocks. Phys. Rev. D 91, 015015 (2015).

    ADS 

    Google Scholar
     

  • Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy, C. J. et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett. 125, 201302 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Takano, T. et al. Geopotential measurements with synchronously linked optical lattice clocks. Nat. Photon. 10, 662–666 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14, 437–441 (2018).

    CAS 

    Google Scholar
     

  • Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 14, 411–415 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Hinkley, N. et al. An atomic clock with 10−18 instability. Science 341, 1215–1218 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Marti, G. E. et al. Imaging optical frequencies with 100 μHz precision and 1.1 μm resolution. Phys. Rev. Lett. 120, 103201 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia 56, 065004 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Boulder Atomic Clock Optical Network (BACON) Collaboration. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591, 564–569 (2021).

    ADS 

    Google Scholar
     

  • Itano, W. M. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Dick, G. J., Prestage, J. D., Greenhall, C. A. & Maleki, L. Local oscillator induced degradation of medium-term stability in passive atomic frequency standards. In Proc. 22nd Precise Time and Time Interval Meeting (Ed.Sydnor, R. L.) 487–508 (NASA, 1990).

  • Kim, M. E. et al. Optical coherence between atomic species at the second scale: improved clock comparisons via differential spectroscopy. Preprint at https://arxiv.org/abs/2109.09540 (2021).

  • Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s. Phys. Rev. Lett. 109, 230801 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Clements, E. R. et al. Lifetime-limited interrogation of two independent 27Al+ clocks using correlation spectroscopy. Phys. Rev. Lett. 125, 243602 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Swallows, M. D. et al. Suppression of collisional shifts in a strongly interacting lattice clock. Science 331, 1043–1046 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Martin, M. J. et al. A quantum many-body spin system in an optical lattice clock. Science 341, 632–636 (2013).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Blatt, S. et al. Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock. Phys. Rev. A 80, 052703 (2009).

    ADS 

    Google Scholar
     

  • Hutson, R. B. et al. Engineering quantum states of matter for atomic clocks in shallow optical lattices. Phys. Rev. Lett. 123, 123401 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    ADS 

    Google Scholar
     

  • Beloy, K. et al. Faraday-shielded dc stark-shift-free optical lattice clock. Phys. Rev. Lett. 120, 183201 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K. Phys. Rev. Lett. 119, 243601 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Milner, W. R. et al. Demonstration of a timescale based on a stable optical carrier. Phys. Rev. Lett. 123, 173201 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Norcia, M. A. et al. Seconds-scale coherence on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Dörscher, S. et al. Lattice-induced photon scattering in an optical lattice clock. Phys. Rev. A 97, 063419 (2018).

    ADS 

    Google Scholar
     

  • Boyd, M. M. et al. Nuclear spin effects in optical lattice clocks. Phys. Rev. A 76, 022510 (2007).

    ADS 

    Google Scholar
     

  • Delaunay, C., Ozeri, R., Perez, G. & Soreq, Y. Probing atomic Higgs-like forces at the precision frontier. Phys. Rev. D 96, 093001 (2017).

    ADS 

    Google Scholar
     

  • Berengut, J. C. et al. Probing new long-range interactions by isotope shift spectroscopy. Phys. Rev. Lett. 120, 091801 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Takano, T., Mizushima, R. & Katori, H. Precise determination of the isotope shift of 88Sr – 87Sr optical lattice clock by sharing perturbations. Appl. Phys. Express 10, 072801 (2017).

    ADS 

    Google Scholar
     

  • Miyake, H., Pisenti, N. C., Elgee, P. K., Sitaram, A. & Campbell, G. K. Isotope-shift spectroscopy of the 1S03P1 and 1S03P0 transitions in strontium. Phys. Rev. Res. 1, 033113 (2019).

    CAS 

    Google Scholar
     

  • Counts, I. & Hur, J. et al. Evidence for nonlinear isotope shift in Yb+ search for new boson. Phys. Rev. Lett. 125, 123002 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Taichenachev, A. V. et al. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. Phys. Rev. Lett. 96, 083001 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).

    CAS 

    Google Scholar
     

  • Gil, L. I. R., Mukherjee, R., Bridge, E. M., Jones, M. P. A. & Pohl, T. Spin squeezing in a Rydberg lattice clock. Phys. Rev. Lett. 112, 103601 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Van Damme, J., Zheng, X., Saffman, M., Vavilov, M. G. & Kolkowitz, S. Impacts of random filling on spin squeezing via Rydberg dressing in optical clocks. Phys. Rev. A 103, 023106 (2021).

    ADS 

    Google Scholar
     

  • Bothwell, T. et al. Resolving the gravitational redshift within a millimeter atomic sample. Nature https://doi.org/10.1038/s41586-021-04349-7 (2022).

  • Lemonde, P. & Wolf, P. Optical lattice clock with atoms confined in a shallow trap. Phys. Rev. A 72, 033409 (2005).

    ADS 

    Google Scholar
     

  • Campbell, G. K. et al. The absolute frequency of the 87Sr optical clock transition. Metrologia 45, 539 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Schmid, S., Thalhammer, G., Winkler, K., Lang, F. & Denschlag, J. H. Long distance transport of ultracold atoms using a 1D optical lattice. New J. Phys. 8, 159 (2006).

    ADS 

    Google Scholar
     

  • Ma, L. S., Jungner, P., Ye, J. & Hall, J. L. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett. 19, 1777–1779 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • Falke, S., Misera, M., Sterr, U. & Lisdat, C. Delivering pulsed and phase stable light to atoms of an optical clock. Appl. Phys. B 107, 301–311 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Swallows, M. D. et al. Operating a 87Sr optical lattice clock with high precision and at high density. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59, 416–425 (2012).


    Google Scholar
     

  • Source link