May 29, 2024
Differential mechanisms underlie trace and delay conditioning in Drosophila – Nature

Differential mechanisms underlie trace and delay conditioning in Drosophila – Nature

  • Clark, R. E. & Squire, L. R. Classical conditioning and brain systems: the role of awareness. Science 280, 77–81 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, C. J. et al. Trace but not delay fear conditioning requires attention and the anterior cingulate cortex. Proc. Natl Acad. Sci. USA 100, 13087–13092 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garner, A. R. et al. Generation of a synthetic memory trace. Science 335, 1513–1516 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raybuck, J. D. & Lattal, K. M. Bridging the interval: theory and neurobiology of trace conditioning. Behav. Processes 101, 103–111 (2014).

    PubMed 

    Google Scholar
     

  • Colgin, L. L. Mechanisms and functions of theta rhythms. Annu. Rev. Neurosci. 36, 295–312 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koechlin, E. Prefrontal executive function and adaptive behavior in complex environments. Curr. Opin. Neurobiol. 37, 1–6 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Nichols, M. J. & Newsome, W. T. The neurobiology of cognition. Nature 402, C35–C38 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Milner, B., Squire, L. R. & Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron 20, 445–468 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Knight, D. C., Cheng, D. T., Smith, C. N., Stein, E. A. & Helmstetter, F. J. Neural substrates mediating human delay and trace fear conditioning. J. Neurosci. 24, 218–228 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kronforst-Collins, M. A. & Disterhoft, J. F. Lesions of the caudal area of rabbit medial prefrontal cortex impair trace eyeblink conditioning. Neurobiol. Learn. Mem. 69, 147–162 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Connor, D. A. & Gould, T. J. The role of working memory and declarative memory in trace conditioning. Neurobiol. Learn. Mem. 134, 193–209 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • LeDoux, J. E. & Lau, H. Seeing consciousness through the lens of memory. Curr. Biol. 30, R1018–R1022 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Venken, K. J. T., Simpson, J. H. & Bellen, H. J. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72, 202–230 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haberkern, H. & Jayaraman, V. Studying small brains to understand the building blocks of cognition. Curr. Opin. Neurobiol. 37, 59–65 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Tully, T. & Quinn, W. G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157, 263–277 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Owald, D. & Waddell, S. Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila. Curr. Opin. Neurobiol. 35, 178–184 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busto, G. U., Cervantes-Sandoval, I. & Davis, R. L. Olfactory learning in Drosophila. Physiology 25, 338–346 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Galili, D. S., Lüdke, A., Galizia, C. G., Szyszka, P. & Tanimoto, H. Olfactory trace conditioning in Drosophila. J. Neurosci. 31, 7240–7248 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuai, Y., Hu, Y., Qin, H., Campbell, R. A. A. & Zhong, Y. Distinct molecular underpinnings of Drosophila olfactory trace conditioning. Proc. Natl Acad. Sci. USA 108, 20201–20206 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dill, M., Wolf, R. & Heisenberg, M. Visual pattern recognition in Drosophila involves retinotopic matching. Nature 365, 751–753 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamikouchi, A. et al. The neural basis of Drosophila gravity-sensing and hearing. Nature 458, 165–171 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pacheco, D. A., Thiberge, S. Y., Pnevmatikakis, E. & Murthy, M. Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat. Neurosci. 24, 93–104 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Neuser, K., Triphan, T., Mronz, M., Poeck, B. & Strauss, R. Analysis of a spatial orientation memory in Drosophila. Nature 453, 1244–1247 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ofstad, T. A., Zuker, C. S. & Reiser, M. B. Visual place learning in Drosophila melanogaster. Nature 474, 204–209 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, G. et al. Distinct memory traces for two visual features in the Drosophila brain. Nature 439, 551–556 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogt, K. et al. Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife 3, e02395 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K., Guo, J. Z., Peng, Y., Xi, W. & Guo, A. Dopamine–mushroom body circuit regulates saliency-based decision-making in Drosophila. Science 316, 1901–1904 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aso, Y. et al. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 3, e04580 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cognigni, P., Felsenberg, J. & Waddell, S. Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila. Curr. Opin. Neurobiol. 49, 51–58 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srinivasan, S., Greenspan, R. J., Stevens, C. F. & Grover, D. Deep(er) learning. J. Neurosci. 38, 7365–7374 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, Z. & Davis, R. L. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front. Neural Circuits 3, 5 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, X. et al. Morning and evening circadian pacemakers independently drive premotor centers via a specific dopamine relay. Neuron 102, 843–857 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lebestky, T. et al. Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 64, 522–536 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aso, Y. et al. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3, e04577 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knudsen, E. I. Fundamental components of attention. Annu. Rev. Neurosci. 30, 57–78 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Carter, R. M. K., Hofstötter, C., Tsuchiya, N. & Koch, C. Working memory and fear conditioning. Proc. Natl Acad. Sci. USA. 100, 1399–1404 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, R. & Sejnowski, T. J. Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks. Nat. Neurosci. 24, 129–139 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Renn, S. C. P. et al. Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J. Neurobiol. 41, 189–207 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci. 1, 304–309 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Sutton, R. S. & Barto, A. G. Toward a modern theory of adaptive networks: Expectation and prediction. Psychol. Rev. 88, 135–170 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • Schultz, W. Dopamine reward prediction error coding. Dialogues Clin. Neurosci. 18, 23–32 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tobler, P. N., Fiorillo, C. D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lak, A. et al. Dopaminergic and prefrontal basis of learning from sensory confidence and reward value. Neuron 105, 700–711 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabandal, J. M., Berry, J. A. & Davis, R. L. Dopamine-based mechanism for transient forgetting. Nature 591, 426–430 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Green, J., Vijayan, V., Mussells Pires, P., Adachi, A. & Maimon, G. A neural heading estimate is compared with an internal goal to guide oriented navigation. Nat. Neurosci. 22, 1460–1468 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shih, C. T. et al. Connectomics-based analysis of information flow in the drosophila brain. Curr. Biol. 25, 1249–1258 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Franconville, R., Beron, C. & Jayaraman, V. Building a functional connectome of the drosophila central complex. eLife 7, e37017 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher, Y. E., Lu, J., D’Alessandro, I. & Wilson, R. I. Sensorimotor experience remaps visual input to a heading-direction network. Nature 576, 121–125 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mashour, G. A., Roelfsema, P., Changeux, J. P. & Dehaene, S. Conscious processing and the global neuronal workspace hypothesis. Neuron 105, 776–798 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, T. et al. A genetic toolkit for dissecting dopamine circuit function in Drosophila. Cell Rep. 23, 652–665 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T. & Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523–1531 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, pl6 (2004).

    PubMed 

    Google Scholar
     

  • Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weir, P. T. & Dickinson, M. H. Functional divisions for visual processing in the central brain of flying Drosophila. Proc. Natl Acad. Sci. USA. 112, E5523–E5532 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    ADS 
    CAS 

    Google Scholar
     

  • Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In Proc. SIGCHI Conference on Human Factors in Computing Systems 143–146 (Association for Computing Machinery, 2011).

  • Source link