May 27, 2024

Direct observation of ultrafast hydrogen bond strengthening in liquid water – Nature

  • 1.

    Stillinger, F. H. Water revisited. Science 209, 451–457 (1980).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 2.

    Perakis, F. et al. Vibrational spectroscopy and dynamics of water. Chem. Rev. 116, 7590–7607 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Lindner, J. et al. Vibrational relaxation of pure liquid water. Chem. Phys. Lett. 421, 329–333 (2006).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 4.

    Ramasesha, K., De Marco, L., Mandal, A. & Tokmakoff, A. Water vibrations have strongly mixed intra- and intermolecular character. Nat. Chem. 5, 935–940 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Bakker, H. J. et al. Transient absorption of vibrationally excited water. J. Chem. Phys. 116, 2592–2598 (2002).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 6.

    Fecko, C. J., Eaves, J. D., Loparo, J. J., Tokmakoff, A. & Geissler, P. L. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 7.

    Ashihara, S., Huse, N., Espagne, A., Nibbering, E. T. J. & Elsaesser, T. Ultrafast structural dynamics of water induced by dissipation of vibrational energy. J. Phys. Chem. A 111, 743–746 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Auer, B. M. & Skinner, J. L. IR and Raman spectra of liquid water: theory and interpretation. J. Chem. Phys. 128, 224511 (2008).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 9.

    Amann-Winkel, K. et al. X-ray and neutron scattering of water. Chem. Rev. 116, 7570–7589 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Sellberg, J. A. et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510, 381–384 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 11.

    Beyerlein, K. R. et al. Ultrafast nonthermal heating of water initiated by an X-ray free-electron laser. Proc. Natl Acad. Sci. USA 115, 5652–5657 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 12.

    Wen, H., Huse, N., Schoenlein, R. W. & Lindenberg, A. M. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy. J. Chem. Phys. 131, 234505 (2009).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Perakis, F. et al. Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics. Nat. Commun. 9, 1917 (2018).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Kim, K. H. et al. Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518, 385–389 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 15.

    van Driel, T. B. et al. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst. Nat. Commun. 7, 13678 (2016).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Nunes, J. P. F. et al. Liquid-phase mega-electron-volt ultrafast electron diffraction. Struct. Dyn. 7, 024301 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Koralek, J. D. et al. Generation and characterization of ultrathin free-flowing liquid sheets. Nat. Commun. 9, 1353 (2018).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Ihee, H. Visualizing solution-phase reaction dynamics with time-resolved X-ray liquidography. Acc. Chem. Res. 42, 356–366 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Skinner, L. B., Benmore, C. J., Neuefeind, J. C. & Parise, J. B. The structure of water around the compressibility minimum. J. Chem. Phys. 141, 214507 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 20.

    Haldrup, K. et al. Observing solvation dynamics with simultaneous femtosecond X-ray emission spectroscopy and X-ray scattering. J. Phys. Chem. B 120, 1158–1168 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 21.

    Morawietz, T., Singraber, A., Dellago, C. & Behler, J. How van der Waals interactions determine the unique properties of water. Proc. Natl Acad. Sci. USA 113, 8368–8373 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 22.

    Dettori, R. et al. Simulating energy relaxation in pump–probe vibrational spectroscopy of hydrogen-bonded liquids. J. Chem. Theory Comput. 13, 1284–1292 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 23.

    Dettori, R., Ceriotti, M., Hunger, J., Colombo, L. & Donadio, D. Energy relaxation and thermal diffusion in infrared pump–probe spectroscopy of hydrogen-bonded liquids. J. Phys. Chem. Lett. 10, 3447–3452 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 24.

    Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. Evidence for resonance-assisted hydrogen bonding. 4. Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H-O system by crystal structure correlation methods. J. Am. Chem. Soc. 116, 909–915 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Lippincott, E. R. & Schroeder, R. One‐dimensional model of the hydrogen bond. J. Chem. Phys. 23, 1099–1106(1955).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 26.

    Staib, A. & Hynes, J. T. Vibrational predissociation in hydrogen-bonded OH…O complexes via OH stretch-OO stretch energy transfer. Chem. Phys. Lett. 204, 197–205 (1993).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 27.

    McKenzie, R. H., Bekker, C., Athokpam, B. & Ramesh, S. G. Effect of quantum nuclear motion on hydrogen bonding. J. Chem. Phys. 140, 174508 (2014).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 28.

    Grabowski, S. J. What is the covalency of hydrogen bonding? Chem. Rev. 111, 2597–2625 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 29.

    Shibata, S. & Bartell, L. S. Electron‐diffraction study of water and heavy water. J. Chem. Phys. 42, 1147–1151 (1965).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 30.

    Ceriotti, M. et al. Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem. Rev. 116, 7529–7550 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Weathersby, S. P. et al. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum. 86, 073702 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 32.

    Bertie, J. E. & Lan, Z. Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25 °C between 15,000 and 1 cm-1. Appl. Spectrosc. 50, 1047–1057 (1996).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 33.

    Sorenson, J. M., Hura, G., Glaeser, R. M. & Head-Gordon, T. What can x-ray scattering tell us about the radial distribution functions of water? J. Chem. Phys. 113, 9149–9161 (2000).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 34.

    Brockway, L. O. Electron diffraction by gas molecules. Rev. Mod. Phys. 8, 0231–0266 (1936).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 35.

    Hubbell, J. H. et al. Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. Data 4, 471–538 (1975).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 36.

    Yang, J. et al. Structure retrieval in liquid-phase electron scattering. Phys. Chem. Chem. Phys. 23, 1308–1316 (2021).

  • 37.

    Horn, H. W. et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120, 9665–9678 (2004).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 38.

    Levine, B. G., Stone, J. E. & Kohlmeyer, A. Fast analysis of molecular dynamics trajectories with graphics processing units—radial distribution function histogramming. J. Comput. Phys. 230, 3556–3569 (2011).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • 39.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Dohn, A. O. et al. On the calculation of X-ray scattering signals from pairwise radial distribution functions. J. Phys. B 48, 244010 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Bartell, L. S. & Gavin, R. M. Effects of electron correlation in x-ray and electron diffraction. J. Am. Chem. Soc. 86, 3493–3498 (1964).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Wang, J. H., Tripathi, A. N. & Smith, V. H. Chemical-binding and electron orrelation-effects in x-ray and high-energy electron-scattering. J. Chem. Phys. 101, 4842–4854 (1994).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 43.

    Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article 
    ADS 

    Google Scholar
     

  • 44.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Zwanzig, R. in Non-equilibrium Statistical Mechanics, 1st edn, ch. 1, 18–21 (Oxford Univ. Press, 2001).

  • 47.

    Ceriotti, M. & Parrinello, M. The δ-thermostat: selective normal-modes excitation by colored-noise Langevin dynamics. Procedia Comput. Sci. 1, 1607–1614 (2010).

    Article 

    Google Scholar
     

  • 48.

    Marx, D. & Parrinello, M. Ab initio path integral molecular dynamics: basic ideas. J. Chem. Phys. 104, 4077–4082 (1996).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 49.

    Cao, J. & Voth, G. A. The formulation of quantum statistical mechanics based on the Feynman path centroid density. III. Phase space formalism and analysis of centroid molecular dynamics. J. Chem. Phys. 101, 6157–6167 (1994).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 50.

    Markland, T. E. & Ceriotti, M. Nuclear quantum effects enter the mainstream. Nature Reviews Chemistry 2, 0109, https://doi.org/10.1038/s41570-017-0109 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Hockney, R. W. & Eastwood, J. W. Computer simulation using particles, 1st edn, ch. 1 (Taylor & Francis, 1988).

  • 52.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS 
    MATH 
    Article 
    ADS 

    Google Scholar
     

  • 53.

    Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

  • 54.

    Ufimtsev, I. S. & Martínez, T. J. Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation. J. Chem. Theory Comput. 4, 222–231 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Ufimtsev, I. S. & Martinez, T. J. Quantum chemistry on graphical processing units. 2. Direct self-consistent-field implementation. J. Chem. Theory Comput. 5, 1004–1015 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 56.

    Ufimtsev, I. S. & Martinez, T. J. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 5, 2619–2628 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 57.

    Yang, J. et al. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science 368, 885–889 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 58.

    Shibata, S., Sekiyama, H., Tachikawa, K. & Moribe, M. Chemical bonding effect in electron scattering by gaseous molecules. J. Mol. Struct. 641, 1–6 (2002).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 59.

    Jensen, P. Hamiltonians for the internal dynamics of triatomic molecules. J. Chem. Soc. Faraday Trans. 84, 1315–1339 (1988).

    CAS 
    Article 

    Google Scholar
     

  • 60.

    Wilson, E. B. J., Decius, J. C. & Cross, P. C. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Dover Publications, 2012).

  • 61.

    Ceriotti, M., Bussi, G. & Parrinello, M. Colored-noise thermostats à la carte. J. Chem. Theory Comput. 6, 1170–1180 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Ceriotti, M., Bussi, G. & Parrinello, M. Nuclear quantum effects in solids using a colored-noise thermostat. Phys. Rev. Lett. 103, 030603 (2009).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 63.

    Marsalek, O. & Markland, T. E. Ab initio molecular dynamics with nuclear quantum effects at classical cost: ring polymer contraction for density functional theory. J. Chem. Phys. 144, 054112 (2016).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 64.

    Habershon, S. & Manolopoulos, D. E. Zero point energy leakage in condensed phase dynamics: an assessment of quantum simulation methods for liquid water. J. Chem. Phys. 131, 244518 (2009).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 65.

    Salvat, F., Jablonski, A. & Powell, C. J. ELSEPA – Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput. Phys. Commun. 165, 157–190 (2005).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 66.

    Kim, J. G. et al. Mapping the emergence of molecular vibrations mediating bond formation. Nature 582, 520–524 (2020).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • 67.

    Császár, A. G. et al. First-principles prediction and partial characterization of the vibrational states of water up to dissociation. J. Quant. Spectrosc. Radiat. Transfer 111, 1043–1064 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 68.

    Soper, A. K. Joint structure refinement of X-ray and neutron diffraction data on disordered materials: application to liquid water. J. Phys. Condens. Matter 19, 335206 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Source link