May 24, 2024

Directed assembly of layered perovskite heterostructures as single crystals – Nature

  • 1.

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    MathSciNet 
    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • 2.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 3.

    Wong, F. J. & Ramanathan, S. Nonisostructural complex oxide heteroepitaxy. J. Vac. Sci. Technol. A 32, 040801–040817 (2014).

    Article 
    CAS 

    Google Scholar
     

  • 4.

    Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 5.

    Li, J., Chen, Z., Wang, R.-J. & Proserpio, D. M. Low temperature route towards new materials: solvothermal synthesis of metal chalcogenides in ethylenediamine. Coord. Chem. Rev. 190, 707–735 (1999).

    Article 

    Google Scholar
     

  • 6.

    Lobo, R. F., Zones, S. I. & Davis, M. E. Structure-direction in zeolite synthesis. J. Incl. Phenom. Mol. Recognit. Chem. 21, 47–78 (1995).

    CAS 

    Google Scholar
     

  • 7.

    Rao, C. N. R. & Thomas, J. M. Intergrowth structures: the chemistry of solid-solid interfaces. Acc. Chem. Res. 18, 113–119 (2002).

    Article 

    Google Scholar
     

  • 8.

    Schaak, R. E. & Mallouk, T. E. Perovskites by design: a toolbox of solid-state reactions. Chem. Mater. 14, 1455–1471 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Viciu, L., Koenig, J., Spinu, L., Zhou, W. L. & Wiley, J. B. Insertion of a two-dimensional iron-chloride network between perovskite blocks. Synthesis and characterization of the layered oxyhalide, (FeCl)LaNb2O7. Chem. Mater. 15, 1480–1485 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Tulsky, E. G. & Long, J. R. Dimensional reduction: a practical formalism for manipulating solid structures. Chem. Mater. 13, 1149–1166 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • 12.

    Mercier, N. & Riou, A. An organic–inorganic hybrid perovskite containing copper paddle-wheel clusters linking perovskite layers: [Cu(O2C–(CH2)3–NH3)2]PbBr4. Chem. Commun. 123, 844–845 (2004).

    Article 

    Google Scholar
     

  • 13.

    AlShammari, M. B. et al. Phase transitions, optical and electronic properties of the layered perovskite hybrid [NH3(CH2)2COOH]2CdCl4 of γ-aminobutyric acid (GABA). Chem. Phys. Lett. 702, 8–15 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 14.

    Spencer, J. B. & Lundgren, J.-O. Hydrogen bond studies. LXXIII.* The crystal structure of trifluoromethanesulphonic acid monohydrate, H3O+CF3SO3, at 298 and 83°K. Acta Crystallogr. B 29, 1923–1928 (1973).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    King, E. J. The ionization constants of taurine and its activity coefficient in hydrochloric acid solutions from electromotive force measurements. J. Am. Chem. Soc. 75, 2204–2209 (1953).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Pietraszko, A. & Lukaszewicz, K. Crystal structure of α-LiNH4SO4 in the basic polytypic modification. Pol. J. Chem. 66, 2057–2061 (1992).

    CAS 

    Google Scholar
     

  • 17.

    Nord, A. G. Crystal structure of β-Li2SO4. Acta Crystallogr. B 32, 982–983 (1976).

    Article 

    Google Scholar
     

  • 18.

    Doudin, B. & Chapuis, G. Structure analysis of the high-temperature phases of [NH3(C3H7)]2CuCl4. I. The commensurate phases. Acta Crystallogr. B 46, 175–180 (1990).

    Article 

    Google Scholar
     

  • 19.

    Komornicka, D., Wołcyrz, M. & Pietraszko, A. Polymorphism and polytypism of α-LiNH4SO4 crystals. Monte Carlo modeling based on X-ray diffuse scattering. Cryst. Growth Des. 14, 5784–5793 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Macíček, J., Gradinarov, S., Bontchev, R. & Balarew, C. A short dynamically symmetrical hydrogen bond in the structure of K[Mg(H0.5SO4)2(H2O)2]. Acta Crystallogr. C 50, 1185–1188 (1994).

    Article 

    Google Scholar
     

  • 21.

    Rentzeperis, P. J. & Soldatos, C. T. The crystal structure of the anhydrous magnesium sulphate. Acta Crystallogr. 11, 686–688 (1958).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Wolf, N. R., Connor, B. A., Slavney, A. H. & Karunadasa, H. Doubling the stakes: the promise of halide double perovskites. Angew. Chem. Int. Ed. 60, 16264–16278 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Subramanian, L. & Hoffmann, R. Bonding in halocuprates. Inorg. Chem. 31, 1021–1029 (1992).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Plasseraud, L., Cattey, H. & Richard, P. Isolation and X-ray characterization of {[phthalazinium](CuCl2)}: a new example of a dichlorocuprate(I) presenting a rare staircase chain structure. Z. Naturforschung B 65, 317–322 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Lumbreras, M. Structure and ionic conductivity of mixed lead halides PbCl2xBr2(1−x). II. Solid State Ion. 20, 295–304 (1986).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Meresse, A. & Daoud, A. Bis(n-propylammonium) tetrachloroplumbate. Acta Crystallogr. C 45, 194–196 (1989).

    Article 

    Google Scholar
     

  • 27.

    Kamminga, M. E. et al. Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 28, 4554–4562 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Smith, M. D., Connor, B. A. & Karunadasa, H. I. Tuning the luminescence of layered halide perovskites. Chem. Rev. 119, 3104–3139 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 29.

    Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 30.

    Rohlfing, M. & Louie, S. G. Electron-hole excitations in semiconductors and insulators. Phys. Rev. Lett. 81, 2312–2315 (1998).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 31.

    Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 32.

    Strinati, G. Application of the Green’s functions method to the study of the optical properties of semiconductors. Riv. Nuovo Cimento 11, 1–86 (1988).

    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • 34.

    Stokes, H. T., Hatch, D. M. & Campbell, B. J. ISODISTORT, ISOTROPY software suite, https://iso.byu.edu (2020).

  • 35.

    Campbell, B. J., Stokes, H. T., Tanner, D. E. & Hatch, D. M. ISODISPLACE: a web-based tool for exploring structural distortions. J. Appl. Crystallogr. 39, 607–614 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Brese, N. E. & O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. B 47, 192–197 (1991).

    Article 

    Google Scholar
     

  • 37.

    Slater, J. C. Atomic radii in crystals. J. Chem. Phys. 41, 3199–3204 (1964).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 38.

    Earnshaw, A. & Greenwood, N. N. Chemistry of the Elements 367–405 (Elsevier, 1997).

  • 39.

    SAINT and SADABS 8.38A (Bruker AXS, 2017).

  • 40.

    Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    MATH 
    Article 
    CAS 

    Google Scholar
     

  • 41.

    Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    MATH 
    Article 
    CAS 

    Google Scholar
     

  • 42.

    Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    MathSciNet 
    Article 
    ADS 

    Google Scholar
     

  • 46.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 47.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 48.

    Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 49.

    van Setten, M. J. et al. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Deslippe, J. et al. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 51.

    Del Ben, M. et al. Large-scale GW calculations on pre-exascale HPC systems. Comput. Phys. Commun. 235, 187–195 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Del Ben, M. D. et al. Accelerating large-scale excited-state GW calculations on leadership HPC systems. In SC20 Int. Conf. High Performance Computing, Networking, Storage and Analysis, https://doi.org/10.1109/SC41405.2020.00008 (IEEE, 2020).

  • 53.

    Connor, B. A. et al. Alloying a single and a double perovskite: a Cu+/2+ mixed-valence layered halide perovskite with strong optical absorption. Chem. Sci. 12, 8689–8697 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 54.

    Depmeier, V. W. Die Kristallstruktur von Athylammoniumtetrachloromanganat(II) bei Raumtemperatur. Acta Crystallogr. B 32, 303–305 (1976).

    Article 

    Google Scholar
     

  • 55.

    Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Source link