May 6, 2024
Dynamic crosslinking compatibilizes immiscible mixed plastics – Nature

Dynamic crosslinking compatibilizes immiscible mixed plastics – Nature

  • Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 673–686 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The new plastics economy: rethinking the future of plastics. Ellen MacArthur Foundation https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics (2016).

  • Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beromi, M. M. et al. Iron-catalysed synthesis and chemical recycling of telechelic 1,3-enchained oligocyclobutanes. Nat. Chem. 13, 156–162 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2021).

    Article 

    Google Scholar
     

  • Li, X.-L., Clarke, R. W., Jiang, J.-Y., Xu, T.-Q. & Chen, E. Y.-X. A circular polyester platform based on simple gem-disubstituted valerolactones. Nat. Chem. 15, 278–285(2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rorrer, N. A. et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 3, 1006–1027 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article 

    Google Scholar
     

  • Shi, C. et al. Design principles for intrinsically circular polymers with tunable properties. Chem 7, 2896–2912 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Korley, L. T. J., Epps, T. H. III, Helms, B. A. & Ryan, A. J. Toward polymer upcycling – adding value and tackling circularity. Science 373, 66–69 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sheldon, R. A. & Norton, M. Green chemistry and the plastic pollution challenge: towards a circular economy. Green Chem. 22, 6310–6322 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hong, M. & Chen, E. Y.-X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rottger, M. et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 356, 62–65 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Simhadri, C. et al. Flexible polyfluorinated bis-diazirines as molecular adhesives. Chem. Sci. 12, 4147–4153 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lepage, M. L. et al. A broadly applicable cross-linker for aliphatic polymers containing C–H bonds. Science 366, 875–878 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1942).

  • Bowman, C. N. & Kloxin, C. J. Covalent adaptable networks: reversible bond structures incorporated in polymer networks. Angew. Chem. Int. Ed. Engl. 51, 4272–4274 (2021).

    Article 

    Google Scholar
     

  • Scheutz, G. M., Lessard, J. J., Sims, M. B. & Sumerlin, B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc. 141, 16181–16196 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fortman, D. J. et al. Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustain. Chem. Eng. 6, 11145–11159 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Denissen, W., Winne, J. M. & Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7, 30–38 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kloxin, C. J., Scott, T. F., Adzima, B. J. & Bowman, C. N. Covalent adaptable networks (CANs): a unique paradigm in cross-linked polymers. Macromolecules 43, 2643–2653 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Worrell, B. T. et al. A user’s guide to the thiol-thioester exchange in organic media. Polym. Chem. 9, 4523–4534 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q., Qu, D. H., Feringa, B. L. & Tian, H. Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. J. Am. Chem. Soc. 144, 2022–2033 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clarke, R. W., McGraw, M. L., Newell, B. S. & Chen, E. Y.-X. Thermomechanical activation achieving orthogonal work/healing conditions in nanostructured tri-block copolymer thermosets. Cell Rep. Phys. Sci. 2, 100483 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tretbar, C. A., Neal, J. A. & Guan, Z. Direct silyl ether metathesis for vitrimers with exceptional thermal stability. J. Am. Chem. Soc. 141, 16595–16599 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, T., Yoshizawa, F., Itoh, M., Matsunaga, T. & Watanabe, M. Prediction of fire and explosion hazards of reactive chemicals (Part 1). Estimation of explosive properties of self-reactive chemicals from SC-DSC data. Kogyo Kayaku 48, 311–316 (1987).

    CAS 

    Google Scholar
     

  • Musolino, S. F., Pei, Z., Bi, L., DiLabio, G. A. & Wulff, J. E. Structure-function relationships in aryl diazirines reveal optimal design features to maximize C-H insertion. Chem. Sci. 12, 12138–12148 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chee, G.-L., Yalowich, J. C., Bodner, A., Wu, X. & Hasinoff, B. B. A diazirine-based photoaffinity etoposide probe for labeling topoisomerase II. Bioorg. Med. Chem. 18, 830–838 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kremer, K. & Grest, G. S. Dynamics of entangled linear polymer melts: a molecular‐dynamics simulation. J. Chem. Phys. 92, 5057–5086 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Self, J. L. et al. Linear, graft, and beyond: multiblock copolymers as next-generation compatibilizers. JACS Au 2, 310–321 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nomura, K. et al. Multiblock copolymers for recycling polyethylene-poly(ethylene terephthalate) mixed waste. Macromolecules 12, 9726–9735 (2020).

    CAS 

    Google Scholar
     

  • Chen, D., Wang, H. & Li, Y. Reactive compatibilization: formation of double-grafted copolymers by in situ binary grafting and their compatibilization effect. Macromolecules 9, 33091–33099 (2017).

    CAS 

    Google Scholar
     

  • Macosko, C. W. et al. Compatibilizers for melt blending: premade block copolymers. Macromolecules 29, 5990–5998 (1996).

    Article 

    Google Scholar
     

  • Grest, G. S., Lacasse, M., Kremer, K. & Gupta, A. M. Efficient continuum model for simulating polymer blends and copolymers. J. Chem. Phys. 105, 10583–10594 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Meenakshisundaram, V., Hung, J.-H., Patra, T. K. & Simmons, D. S. Designing sequence-specific copolymer compatibilizers using a molecular-dynamics-simulation-based genetic algorithm. Macromolecules 50, 1155–1166 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Estridge, C. E. & Jayaraman, A. Diblock copolymer grafted particles as compatibilizers for immiscible binary homopolymer blends. ACS Macro Lett. 4, 155–159 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patra, T. K., Loeffler, T. D. & Sankaranarayanan, S. K. R. S. Accelerating copolymer inverse design using Monte Carlo tree search. Nanoscale 12, 23653–23662 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Source link