May 27, 2024

Dynamic slab segmentation due to brittle–ductile damage in the outer rise – Nature

  • 1.

    Ranero, C. R., Phipps Morgan, J. & Reichert, C. Bending-related faulting and mantle serpentinization at the Middle America Trench. Nature 425, 367–373 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Ranero, C. R. & Sallarès, V. Geophysical evidence for hydration of the crust and mantle of the Nazca Plate during bending at the North Chile Trench. Geology 32, 549–552 (2004).

    ADS 

    Google Scholar
     

  • 3.

    Grevemeyer, I., Ranero, C. R., Flueh, E. R., Kläschen, D. & Bialas, J. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America Trench. Earth Planet. Sci. Lett. 258, 528–542 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Faccenda, M., Gerya, T. V. & Burlini, L. Deep slab hydration induced by bending related variations in tectonic pressure. Nat. Geosci. 2, 790–793 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Van Avendonk, H. J. A., Holbrook, W. S., Lizarralde, D. & Denyer, P. Structure and serpentinization of the subducting Cocos Plate offshore Nicaragua and Costa Rica. Geochem. Geophys. Geosyst.12, Q06009 (2011).

    ADS 

    Google Scholar
     

  • 6.

    Nakamura, Y., Kodaira, S., Miura, S., Regalla, C., Takahashi, N. High-resolution seismic imaging in the Japan Trench axis area off Miyagi, northeastern Japan. Geophys. Res. Lett. 40, 1713–1718 (2013).

    ADS 

    Google Scholar
     

  • 7.

    Boston, B., Moore, G. F., Nakamura, Y. & Kodaira, S. Outer-rise normal fault development and influence on near-trench décollement propagation along the Japan Trench, off Tohoku. Earth Planets Space 66, 135 (2014).

    ADS 

    Google Scholar
     

  • 8.

    Shillington, D. J. et al. Link between plate fabric, hydration and subduction zone seismicity in Alaska. Nat. Geosci. 8, 961–964 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Plant. Sci. Lett. 457, 1–9 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Petersen, R. I., Stegman, D. R. & Tackley, P. J. The subduction dichotomy of strong plates and weak slabs. Solid Earth. https://doi.org/10.5194/se-2016-56 (2016).

  • 11.

    Tao, K., Grand, S. P. &Niu, F. Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography. Geochem. Geophys. Geosyst. 19, 2732–2763 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Kawakatsu, H. et al. Seismic evidence for sharp lithosphere–asthenosphere boundaries of oceanic plates. Science 324, 499–502 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Wang, X. et al. Distinct slab interfaces imaged within the mantle transition zone. Nat. Geosci. 13, 822–827 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Freed, A. M. et al. Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-oki, Japan earthquake. Earth Planet. Sci. Lett. 459, 279–290 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Herzberg, C. et al. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    van Hunen, J. & van den Berg, A. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103, 217–235 (2008).

    ADS 

    Google Scholar
     

  • 17.

    Sizova, E., Gerya, T., Brown, M. & Perchuk, L. L. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Zhong, S. & Davies, G. F. Effects of plate and slab viscosities on the geoid. Earth Plant. Sci. Lett. 170, 487–496 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Billen, M. I. & Gurnis, M. Constraints on subducting plate strength within the Kermadec Trench. J. Geophys. Res. 110, B05407 (2005).

    ADS 

    Google Scholar
     

  • 20.

    van Summeren, J., Conrad, C. P. & Lithgow-Bertelloni, C. The importance of slab pull and a global asthenosphere to plate motions. Geochem. Geophys. Geosyst. 13, Q0AK03 (2012).


    Google Scholar
     

  • 21.

    Garel, F. et al. Interaction of subducted slabs with the mantle transition‐zone: a regime diagram from 2‐D thermo‐mechanical models with a mobile trench and an overriding plate. Geochem. Geophys. Geosyst. 15, 1739–1765 (2014).

    ADS 

    Google Scholar
     

  • 22.

    Tao, W. C. & O’Connell, R. J. Deformation of a weak subducted slab and variation of seismicity with depth. Nature 361, 626–628 (1993).

    ADS 

    Google Scholar
     

  • 23.

    Wu, B., Conrad, C. P., Heuret, A., Lithgow-Bertelloni, C. & Lallemand,S. Reconciling strong slab pull and weak plate bending: the plate motion constraint on the strength of mantle slabs. Earth Planet. Sci. Lett. 272, 412–421 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Gerya, T. V., Connolly, J. A. D. & Yuen, D. A. Why is terrestrial subduction one-sided? Geology 36, 43–46 (2008).

    ADS 

    Google Scholar
     

  • 25.

    Čížková, H., van Hunen, J., van den Berg, A. P. & Vlaar, N. J. The influence of rheological weakening and yield stress on the interaction of slabs with the 670-km discontinuity. Earth Planet. Sci. Lett. 199, 447–457 (2002).

    ADS 

    Google Scholar
     

  • 26.

    Ribe, N. M. Bending mechanics and mode selection in free subduction: a thin-sheet analysis. Geophys. J. Int. 180, 559–576 (2010).

    ADS 

    Google Scholar
     

  • 27.

    Ghosh, A., Becker, T. W. & Zhong, S. J. Effects of lateral viscosity variations on the geoid. Geophys. Res. Lett. 37, L01301 (2010).

    ADS 

    Google Scholar
     

  • 28.

    Ranalli, G. Rheology of the Earth (Chapman and Hall, 1995).

  • 29.

    Funiciello, F. et al. Trench migration, net rotation and slab–mantle coupling. Earth Planet. Sci. Lett. 271, 233–240.

  • 30.

    Liu, L. & Stegman, D. R. Segmentation of the Farallon slab. Earth Planet. Sci. Lett. 311, 1–10 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Craig, T. J., Copley, A. & Jackson, J. A reassessment of outer-rise seismicity and its implications for the mechanics of oceanic lithosphere. Geophys. J. Int. 197, 63–89 (2014).

    ADS 

    Google Scholar
     

  • 32.

    Bercovici, D., Ricard, Y. Mechanisms for the generation of plate tectonics by two- phase grain-damage and pinning. Phys. Earth Planet. Inter. 202–203, 27–55 (2012).

    ADS 

    Google Scholar
     

  • 33.

    Mulyukova, E. & Bercovici, D. Formation of lithospheric shear zones: effect of temperature on two-phase grain damage. Phys. Earth Planet. Inter. 270, 195–212 (2017).

    ADS 

    Google Scholar
     

  • 34.

    Mulyukova, E. & Bercovici, D. Collapse of passive margins by lithospheric damage and plunging grain size. Earth. Planet. Sci. Lett. 484, 341–352 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Mulyukova, E. & Bercovici, D. The generation of of plate tectonics from grains to global scales: a brief review. Tectonics 38, 4058–4076 (2019).

  • 36.

    Bercovici, D. & Mulyukova, E. Evolution and demise of passive margins through grain mixing and damage. Proc. Natl Acad. Sci. USA 118, e2011247118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Gurnis, M., Hall, C. & Lavier, L., Evolving force balance during incipient subduction. Geochem. Geophys. Geosyst. 5, Q07001 (2004).

    ADS 

    Google Scholar
     

  • 38.

    Masson, D. G. Fault patterns at outer trench walls. Mar. Geophys. Res. 13, 209–225 (1991).

    ADS 

    Google Scholar
     

  • 39.

    Ranero, C. R., Villasenor, A., Morgan, J. P. & Weinrebe, W. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochem. Geophys. Geosyst. 6, Q12002 (2005).

    ADS 

    Google Scholar
     

  • 40.

    Lavier, L. L., Buck, W. R. & Poliakov, A. N. B. Factors controlling normal fault offset in an ideal brittle layer. J. Geophys. Res. 105, 23431–23442 (2000).

    ADS 

    Google Scholar
     

  • 41.

    Choi, E., Lavier, L. & Gurnis, M. Thermomechanics of mid-ocean ridge segmentation. Phys. Earth Planet. Inter. 171, 374–386 (2008).

    ADS 

    Google Scholar
     

  • 42.

    Whitney, D. L., Teyssier, C., Rey, P. & Buck, W. R. Continental and oceanic core complexes. Geol. Soc. Am. Bull. 125, 273–298 (2013).

    ADS 

    Google Scholar
     

  • 43.

    Hirauchi, K., Fukushima, K., Kido, M., Muto, J. & Okamoto, A. Reaction-induced rheological weakening enables oceanic plate subduction. Nat. Commun. 7, 12550 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Duretz, T. et al. The importance of structural softening for the evolution and architecture of passive margins. Sci. Rep. 6, 38704 (2016).


    Google Scholar
     

  • 45.

    John,T. et al. Generation of intermediate-depth earthquakes by self-localizing thermal runaway. Nat. Geosci. 2, 137–140 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Pozzi, G. et al. Coseismic ultramylonites: an investigation of nanoscale viscous flow and fault weakening during seismic slip. Earth Planet. Sci. Lett. 516, 164–175 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Verberne, B. A. et al. Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone. Nat. Commun. 8, 1645 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Craig, T. J., Copley, A. & Middleton, T. A. Constraining fault friction in oceanic lithosphere using the dip angles. Earth Planet. Sci. Lett. 392, 94–99 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Brace, W. F. & Kohlstedt, D. T. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res. 85, 6248–6252 (1980).

    ADS 

    Google Scholar
     

  • 50.

    Boston, B., Moore, G. F., Nakamura,Y. & Kodaira, S. Forearc slope deformation above the Japan Trench megathrust: implications for subduction erosion. Earth Planet. Sci. Lett. 462, 26–34 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Boneh, Y. et al. Intermediate-depth earthquakes controlled by incoming plate hydration along bending-related faults. Geophys. Res. Lett. 46, 3688–3697 (2019).

    ADS 

    Google Scholar
     

  • 52.

    Naliboff, J. B., Billen, M. I., Gerya, T. & Saunders, J. Dynamics of outer rise faulting in oceanic–continental subduction systems. Geochem. Geophys. Geosyst.14, 2310–2327 (2013).

    ADS 

    Google Scholar
     

  • 53.

    Faul, U. H. & Jackson, I. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett. 234, 119–134 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Honda, S. Strength of slab inferred from the seismic tomography and geologic history around the Japanese Islands. Geochem. Geophys. Geosyst. 15, 1333–1347 (2014).

    ADS 

    Google Scholar
     

  • 55.

    Turner, A. J., Katz, R. F. & Behn, M. D. Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction. Geochem. Geophys. Geosyst.16, 925–946 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Gerya, T. V. & Yuen, D. A., Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter. 140, 293–318 (2003).

    ADS 

    Google Scholar
     

  • 57.

    Gerya T. V. Introduction to Numerical Geodynamic Modelling 2nd edn (Cambridge Univ. Press, 2019).

  • 58.

    Karato, S. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Hofmeister, A. M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283, 1699–1706 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2002).

  • 61.

    Clauser, C. & Huenges, E. in Rock Physics and Phase Relations AGU Reference Shelf 3 (ed. Ahrens, T. J.) 105–126 (American Geophysical Union, 1995).

  • 62.

    Hirth, G. & Kohlstedt, D. in Subduction Factor Monograph Vol. 138 (ed. Eiler, J.) 83–105 (American Geophysical Union, 2003).

  • 63.

    Hilairet, N. B. et al. High‐pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318, 1910–1913 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Schmeling, H. et al. A benchmark comparison of spontaneous subduction models: Towards a free surface. Phys. Earth Planet. Inter. 171, 198–223 (2008).

    ADS 

    Google Scholar
     

  • 65.

    Gerya, T. V. & Yuen, D. A. Rayleigh–Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth Planet. Sci. Lett. 212, 47–62 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Baitsch-Ghirardello, B., Gerya, T. V. & Burg, J.-P. Geodynamic regimes of intra-oceanic subduction: implications forearc extension vs. shortening processes. Gondwana Res. 25, 546–560 (2014).

    ADS 

    Google Scholar
     

  • 67.

    Katsura, T. & Ito, E. The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res. 94, 663–670 (1989).


    Google Scholar
     

  • 68.

    Ito, E. et al. Negative pressure–temperature slopes for reactions forming MgSiO3 perovskite from calorimetry. Science 2J9, 1275–1278 (1990).

    ADS 

    Google Scholar
     

  • 69.

    Ito, K. & Kennedy, G. C. in The Structure and Physical Properties of the Earth’s Crust Geophysical Monograph Series 14 (ed. Heacock, J. G.) 303–314 (American Geophysical Union, 1971).

  • 70.

    Bercovici, D. & Ricard, Y. Generation of plate tectonics with two-phase grain-damage and pinning: source–sink model and toroidal flow. Earth Planet. Sci. Lett. 365, 275–288 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 71.

    Bercovici, D. & Ricard, Y. Plate tectonics, damage and inheritance. Nature 508, 513–516 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Bercovici, D., Schubert, G. & Ricard, Y. Abrupt tectonics and rapid slab detachment with grain damage. Proc. Natl Acad. Sci. USA 112, 1287–1291 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Rozel, A., Ricard, Y. & Bercovici, D. A thermodynamically self-consistent damage equation for grain size evolution during dynamic recrystallization. Geophys. J. Int. 184, 719–728 (2011).

    ADS 

    Google Scholar
     

  • 74.

    Hayes, P. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).

    ADS 

    Google Scholar
     

  • Source link