May 27, 2024

Dynamic spatial progression of isolated lithium during battery operations – Nature

  • 1.

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012); erratum Nat. Mater. 11, 172 (2012).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 2.

    Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 3.

    Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 4.

    Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 5.

    Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Lu, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

    Article 

    Google Scholar
     

  • 8.

    Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019)

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 9.

    Yoshimatsu, I., Hirai, T. & Yamaki, J.-i. Lithium electrode morphology during cycling in lithium cells. J. Electrochem. Soc. 135, 2422–2427 (1988).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 10.

    Sanchez, A. J. et al. Plan-view operando video microscopy of Li metal anodes: identifying the coupled relationships among nucleation, morphology, and reversibility. ACS Energy Lett. 5, 994–1004 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Gunnarsdóttir, A. B., Amanchukwu, C. V., Menkin, S. & Grey, C. P. Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 142, 20814–20827 (2020).

    Article 

    Google Scholar
     

  • 12.

    Li, Y. et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2, 2167–2177 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 14.

    Chen, K.-H. et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Xu, S., Chen, K.-H., Dasgupta, N. P., Siegel, J. B. & Stefanopoulou, A. G. Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss. J. Electrochem. Soc. 166, A3456–A3463 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Jin, C. et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 17.

    Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 18.

    Zeng, Z. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 3, 674–681 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 19.

    Gao, Y. et al. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 18, 384–389 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 20.

    Weng, Y.-T. et al. An ultrathin ionomer interphase for high-efficiency lithium anode in carbonate-based electrolyte. Nat. Commun. 10, 5824 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 21.

    Lin, D. et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 17, 3731–3737 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 22.

    Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 23.

    Lin, D. et al. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc. Natl Acad. Sci. USA 114, 4613–4618 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Chen, H. et al. Tortuosity effects in lithium-metal host anodes. Joule 4, 938–952 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Mao, C., Ruther, R. E., Li, J., Du, Z. & Belharouak, I. Identifying the limiting electrode in lithium ion batteries for extreme fast charging. Electrochem. Commun. 97, 37–41 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Belov, D. & Yang, M.-H. Investigation of the kinetic mechanism in overcharge process for Li-ion battery. Solid State Ionics 179, 1816–1821 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Doyle, M., Fuller, T. F. & Newman, J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140, 1526–1533 (1993).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 28.

    Fuller, T. F., Doyle, M. & Newman, J. Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 141, 1–10 (1994).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 29.

    Zheng, J. et al. Highly stable operation of lithium metal batteries enabled by the formation of a transient high-concentration electrolyte layer. Adv. Energy Mater. 6, 1502151 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Source link