May 30, 2024

Elastomeric electrolytes for high-energy solid-state lithium batteries – Nature

  • 1.

    Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    CAS 

    Google Scholar
     

  • 4.

    Lin, D. C., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Wan, J. Y. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Liu, W. et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Zhao, Q., Liu, X. T., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Zhang, X. Y. et al. Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 20, 2871–2878 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Zhu, Y., Cao, J., Chen, H., Yu, Q. & Li, B. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 7, 6832–6839 (2019).

    CAS 

    Google Scholar
     

  • 11.

    Lee, W. et al. Ceramic-salt composite electrolytes from cold sintering. Adv. Funct. Mater. 29, 1807872 (2019).


    Google Scholar
     

  • 12.

    Yang, X. et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? Energy Environ. Sci. 13, 1318–1325 (2020).

    CAS 

    Google Scholar
     

  • 13.

    Chen, R.-J. et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach. ACS Appl. Mater. Interfaces 9, 9654–9661 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Zhou, D. et al. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv. Energy Mater. 5, 1500353 (2015).


    Google Scholar
     

  • 16.

    Jiang, T. et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 10, 1903376 (2020).

    CAS 

    Google Scholar
     

  • 17.

    Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Pan, C. et al. A liquid-metal–elastomer nanocomposite for stretchable dielectric materials. Adv. Mater. 31, 1900663 (2019).


    Google Scholar
     

  • 19.

    Kim, H. J., Chen, B., Suo, Z. & Hayward, R. C. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 367, 773–776 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46, 176–184 (2018).

    CAS 

    Google Scholar
     

  • 22.

    Wang, F. et al. Progress report on phase separation in polymer solutions. Adv. Mater. 31, 1806733 (2019).


    Google Scholar
     

  • 23.

    Seo, M. & Hillmyer, M. A. Reticulated nanoporous polymers by controlled polymerization-induced microphase separation. Science 336, 1422–1425 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Schulze, M. W., Mcintosh, L. D., Hilmyer, M. A. & Lodge, T. P. High-modulus, high-conductivty nanostructured polymer electrolyte membrane via polymerization-induced phase separation. Nano Lett. 14, 122–126 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Alarco, P.-J., Abu-Lebdeh, Y., Abouimrane, A. & Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 3, 476–481 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Choi, K.-H. et al. Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv. Funct. Mater. 24, 44–52 (2014).

    CAS 

    Google Scholar
     

  • 27.

    White, T. J., Natarajan, L. V., Tondiglia, V. P., Bunning, T. J. & Guymon, C. A. Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals. Macromolecules 40, 1112–1120 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Serbutoviez, C., Kloosterboer, J. G., Boots, H. M. J. & Touwslager, F. J. Polymerization-induced phase separation. 2. Morphology of polymer-dispersed liquid crystal thin films. Macromolecules 29, 7690–7698 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Phillip, W. A. et al. Diffusion and flow across nanoporous polydicyclopentadiene-based membranes. ACS Appl. Mater. Interfaces 1, 472–480 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Watson, B. L., Rolston, N., Printz, A. D. & Dauskardt, R. H. Scaffold-reinforced perovskite compound solar cells. Energy Environ. Sci. 10, 2500–2508 (2017).

    CAS 

    Google Scholar
     

  • 31.

    Meng, J., Chu, F., Hu, J. & Li, C. Liquid polydimethylsiloxane grafting to enable dendrite-free Li plating for highly reversible Li-metal batteries. Adv. Funct. Mater. 29, 1902220 (2019).

  • 32.

    Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Bruce, P. G., Evans, J. & Vincent, C. A. Conductivity and transference number measurements on polymer electrolytes. Solid State Ion. 28, 918–922 (1988).


    Google Scholar
     

  • 34.

    Diederichsen, K. M., McShane, E. J. & McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2, 2563–2575 (2017).

    CAS 

    Google Scholar
     

  • 35.

    Timachova, K., Watanabe, H. & Balsara, N. P. Effect of molecular weight and salt concentration on ion transport and the transference number in polymer electrolytes. Macromolecules 48, 7882–7888 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    He, M. et al. Fluorinated electrolytes for 5-V Li-ion chemistry: probing voltage stability of electrolytes with electrochemical floating test. J. Electrochem. Soc. 162, A1725–A1729 (2015).

    CAS 

    Google Scholar
     

  • 37.

    Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Duan, H. et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater. 31, 1807789 (2019).


    Google Scholar
     

  • 39.

    Yu, X. et al. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv. Energy Mater. 10, 1903939 (2020).

    CAS 

    Google Scholar
     

  • 40.

    Lopez, J. et al. A dual-crosslinking design for resilient lithium-ion conductors. Adv. Mater. 30, 1804142 (2018).


    Google Scholar
     

  • 41.

    Zhang, W., Nie, J., Li, F., Wang, Z. L. & Sun, C. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45, 413–419 (2018).

    CAS 

    Google Scholar
     

  • 42.

    Wang, C. et al. Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv. Funct. Mater. 29, 1900392 (2019).


    Google Scholar
     

  • 43.

    Sun, J. et al. Hierarchical composite-solid-electrolyte with high electrochemical stability and interfacial regulation for boosting ultra-stable lithium batteries. Adv. Funct. Mater. 31, 2006381 (2021).

    CAS 

    Google Scholar
     

  • 44.

    Yao, P. et al. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett. 18, 6113–6120 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Fu, C. et al. A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte enables Li-metal batteries. J. Mater. Chem. A 8, 2066–2073 (2020).

    CAS 

    Google Scholar
     

  • 46.

    Mackanic, D. G. et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 10, 5384 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Fu, C. et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 19, 758–766 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Xia, S. et al. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv. Sci. 6, 1802353 (2019).


    Google Scholar
     

  • 49.

    Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Chen, T. et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 54, 17–25 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Lu, Q. et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 29, 1604460 (2017).


    Google Scholar
     

  • 52.

    Dong, T. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11, 1197–1203 (2018).

    CAS 

    Google Scholar
     

  • Source link