May 8, 2024
Electrically tunable quantum confinement of neutral excitons – Nature

Electrically tunable quantum confinement of neutral excitons – Nature

  • Hawrylak, P. & Korkusiński, M. in Single Quantum Dots: Fundamentals, Applications, and New Concepts (ed. Michler, P.) 25–92 (Springer, 2003).

  • Harrison, P. & Valavanis, A. Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures 241–265 (Wiley, 2016).

  • Serwane, F. et al. Deterministic preparation of a tunable few-fermion system. Science 332, 336–338 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaufman, A. M., Lester, B. J. & Regal, C. A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2, 041014 (2012).

    CAS 

    Google Scholar
     

  • Davies, J. H. The Physics of Low-dimensional Semiconductors 118–129 (Cambridge Univ. Press, 1997).

  • Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Noh, C. & Angelakis, D. G. Quantum simulations and many-body physics with light. Rep. Prog. Phys. 80, 016401 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Hagn, M., Zrenner, A., Böhm, G. & Weimann, G. Electric-field-induced exciton transport in coupled quantum well structures. Appl. Phys. Lett. 67, 232 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rapaport, R. et al. Electrostatic traps for dipolar excitons. Phys. Rev. B 72, 075428 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Gärtner, A., Prechtel, L., Schuh, D., Holleitner, A. W. & Kotthaus, J. P. Micropatterned electrostatic traps for indirect excitons in coupled GaAs quantum wells. Phys. Rev. B 76, 085304 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Vögele, X. P., Schuh, D., Wegscheider, W., Kotthaus, J. P. & Holleitner, A. W. Density enhanced diffusion of dipolar excitons within a one-dimensional channel. Phys. Rev. Lett. 103, 126402 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Schinner, G. J. et al. Confinement and interaction of single indirect excitons in a voltage-controlled trap formed inside double InGaAs quantum wells. Phys. Rev. Lett. 110, 127403 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Butov, L. V. Excitonic devices. Superlattices Microstruct. 108, 2–26 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hammack, A. T. et al. Excitons in electrostatic traps. J. Appl. Phys. 99, 066104 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Electrically controllable router of interlayer excitons. Sci. Adv. 6, 1830 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shanks, D. N. et al. Nanoscale trapping of interlayer excitons in a 2D semiconductor heterostructure. Nano Lett. 21, 5641–5647 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goryca, M. et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields. Nat. Commun. 10, 4172 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cavalcante, L. S., Da Costa, D. R., Farias, G. A., Reichman, D. R. & Chaves, A. Stark shift of excitons and trions in two-dimensional materials. Phys. Rev. B 98, 245309 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Efimkin, D. K. & MacDonald, A. H. Many-body theory of trion absorption features in two-dimensional semiconductors. Phys. Rev. B 95, 035417 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Chervy, T. et al. Accelerating polaritons with external electric and magnetic fields. Phys. Rev. 10, 011040 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, J. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Akiyama, H., Someya, T. & Sakaki, H. Optical anisotropy in 5-nm-scale T-shaped quantum wires fabricated by the cleaved-edge overgrowth method. Phys. Rev. B 53, 4229–4232 (1996).

    ADS 
    Article 

    Google Scholar
     

  • Lefebvre, J., Fraser, J. M., Finnie, P. & Homma, Y. Photoluminescence from an individual single-walled carbon nanotube. Phys. Rev. B 69, 075403 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, Q. et al. Highly polarized single photons from strain-induced quasi-1D localized excitons in WSe2. Nano Lett. 21, 7175–7182 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Glazov, M. M. et al. Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers. Phys. Status Solidi B 252, 2349–2362 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yu, H., Cui, X., Xu, X. & Yao, W. Valley excitons in two-dimensional semiconductors. Natl Sci. Rev. 2, 57–70 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Nagamune, Y. et al. Photoluminescence spectra and anisotropic energy shift of GaAs quantum wires in high magnetic fields. Phys. Rev. Lett. 69, 2963–2966 (1992).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Togan, E., Lim, H.-T., Faelt, S., Wegscheider, W. & Imamoglu, A. Enhanced interactions between dipolar polaritons. Phys. Rev. Lett. 121, 227402 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lim, H.-T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoglu, A. Electrically tunable artificial gauge potential for polaritons. Nat. Commun. 8, 14540 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chestnov, I. Y., Arakelian, S. M. & Kavokin, A. V. Giant synthetic gauge field for spinless microcavity polaritons in crossed electric and magnetic fields. New J. Phys. 23, 023024 (2021).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. NPJ 2D Mater. Appl. 4, 8 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosenberg, I. et al. Strongly interacting dipolar-polaritons. Sci. Adv. 4, eaat8880 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ołdziejewski, R., Chiocchetta, A., Knörzer, J. & Schmidt, R. Excitonic Tonks-Girardeau and charge-density wave phases in monolayer semiconductors. Preprint at https://arxiv.org/abs/2106.07290 (2021).

  • Hartmann, M. J., Brandao, F. G. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. Quantum phase transitions of light. Nat. Phys. 2, 856–861 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Telford, E. J. et al. Via method for lithography free contact and preservation of 2D materials. Nano Lett. 18, 1416–1420 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Article 

    Google Scholar
     

  • Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, 1601832 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Larentis, S. et al. Large effective mass and interaction-enhanced Zeeman splitting of K-valley electrons in MoSe2. Phys. Rev. B 97, 201407 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laturia, A., de Put, M. L. V. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. NPJ 2D Mater. Appl. 2, 6 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Smoleński, T. et al. Interaction-induced Shubnikov–de Haas oscillations in optical conductivity of monolayer MoSe2. Phys. Rev. Lett. 123, 097403 (2019).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lozovik, Y. E., Ovchinnikov, I. V., Volkov, S. Y., Butov, L. V. & Chemla, D. S. Quasi-two-dimensional excitons in finite magnetic fields. Phys. Rev. B 65, 235304 (2002).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Source link