May 20, 2024
Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet – Nature

Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet – Nature

  • Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Xu, S. Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamai, A. et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2. Phys. Rev. X 6, 031021 (2016).


    Google Scholar
     

  • Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    CAS 

    Google Scholar
     

  • Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS 

    Google Scholar
     

  • Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Q. et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. B 97, 235416 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Niels B. M. et al. Weyl fermions, Fermi arcs, and minority-spin carriers in ferromagnetic CoS2. Sci. Adv. https://www.science.org/doi/pdf/10.1126/sciadv.abd5000 (2020).

  • Smejkal, L., Gonzalez-Hernandez, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, K. H., Hariki, A., Lee, K. W. & Kuněs, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Schulz, S. et al. Classical and cubic rashba effect in the presence of in-plane 4f magnetism at the iridium silicide surface of the antiferromagnet GdIr2Si2. Phys. Rev. B 103, 035123 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Usachov, D. Y. et al. Cubic Rashba effect in the surface spin structure of rare-earth ternary materials. Phys. Rev. Lett. 124, 237202 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumigashira, H. et al. High-resolution angle-resolved photoemission spectroscopy of CeBi. Phys. Rev. B 54, 9341–9345 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Canfield, P. C. & Fisk, Z. Growth of single crystals from metallic fluxes. Philos. Mag. B 65, 1117–1123 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • Canfield, P. C. & Fisher, I. R. High-temperature solution growth of intermetallic single crystals and quasicrystals. J. Cryst. Growth 225, 155–161 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Electronic structure of RSb (R=Y, Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 96, 035134 (2017).

    ADS 

    Google Scholar
     

  • Kuroda, K. et al. Experimental determination of the topological phase diagram in cerium monopnictides. Phys. Rev. Lett. 120, 086402 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, X. et al. Tunable electronic structure and topological properties of LnPn (Ln=Ce, Pr, Sm, Gd, Yb; Pn=Sb, Bi). Commun. Phys. 1, 71 (2018).


    Google Scholar
     

  • Guo, C. et al. Possible Weyl fermions in the magnetic Kondo system CeSb. npj Quant. Mater. 2, 39 (2017).

    ADS 

    Google Scholar
     

  • Huang, Z. et al. Prediction of spin polarized Fermi arcs in quasiparticle interference in CeBi. Phys. Rev. B 102, 235167 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Oinuma, H. et al. Unusual change in the Dirac-cone energy band upon a two-step magnetic transition in CeBi. Phys. Rev. B 100, 125122 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Kuroda, K. et al. Devil’s staircase transition of the electronic structures in CeSb. Nat. Commun. 11, 2888 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • C. E. Matt, et al. Spin-polarized imaging of strongly interacting fermions in the ferrimagnetic state of Weyl candidate. Preprint at https://arxiv.org/abs/2012.14911 (2020).

  • Tsuchida, T. & Wallace, W. E. Magnetic characteristics of lanthanide–bismuth compounds. J. Chem. Phys. 43, 2087–2092 (1965).

    ADS 
    CAS 

    Google Scholar
     

  • Nereson, N. & Arnold, G. Magnetic properties of CeBi, NdBi, TbBi, and DyBi. J. Appl. Phys. 42, 1625–1627 (1971).

    ADS 
    CAS 

    Google Scholar
     

  • Schobinger-Papamantellos, P., Fischer, P., Vogt, O. & Kaldis, E. Magnetic ordering of neodymium monopnictides determined by neutron diffraction. J. Phys. C 6, 725–737 (1973).

    ADS 
    CAS 

    Google Scholar
     

  • Venus, D. Magnetic circular dichroism in angular distributions of core-level photoelectrons. Phys. Rev. B 48, 6144–6151 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y. H. et al. Observation of a warped helical spin texture in Bi2Se3 from circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 207602 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Petrovykh, D. Y. et al. Spin-dependent band structure, Fermi surface, and carrier lifetime of permalloy. Appl. Phys. Lett. 73, 3459–3461 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Rashba, E. I. & Sheka, V. I. Symmetry of energy bands in crystals of wurtzite type: II. Symmetry of bands including spin-orbit interaction. Fiz. Tverd. Tela – Collected Papers 2, 162–176 (1959). (See also G. Bihlmayer et al. New J. Phys. 17, 050202 (2015)).


    Google Scholar
     

  • Topp, A. et al. Surface floating 2D bands in layered nonsymmorphic semimetals: ZrSiS and related compounds. Phys. Rev. 7, 041073 (2017).


    Google Scholar
     

  • Canfield, P. C., Kong, T., Kaluarachchi, U. S. & Jo, N. H. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples. Philos. Mag. 96, 84–92 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Canfield, P. C., Kong, T., Kaluarachchi, U. S. & Jo, N. H. Canfield crucible sets. LSP Industrial Ceramics https://lspceramics.com/canfield-crucible-sets-2/ (accessed 18 February 2022).

  • Canfield, P. C. New materials physics. Rep. Prog. Phys. 83, 016501 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Fisher, M. E. Relation between the specific heat and susceptibility of an antiferromagnet. Philos. Mag. 7, 1731–1743 (1962).

    ADS 
    CAS 

    Google Scholar
     

  • Fisher, M. E. & Langer, J. S. Resistive anomalies at magnetic critical points. Phys. Rev. Lett. 20, 665–668 (1968).

    ADS 
    CAS 

    Google Scholar
     

  • Jiang, R. et al. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy. Rev. Sci. Instrum. 85, 033902 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Scholz, M. R. et al. Reversal of the circular dichroism in angle-resolved photoemission from Bi2Te3. Phys. Rev. Lett. 110, 216801 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • M. Zeng, et al. Topological semimetals and topological insulators in rare earth monopnictides. Preprint at https://arxiv.org/abs/1504.03492 (2015).

  • Wu, Y. et al. Asymmetric mass acquisition in LaBi: topological semimetal candidate. Phys. Rev. B 94, 081108(R) (2016).

    ADS 

    Google Scholar
     

  • Kenta, K. et al. Experimental determination of the topological phase diagram in cerium monopnictides. Phys. Rev. Lett. 120, 086402 (2018).

    ADS 

    Google Scholar
     

  • Peng, L. et al. “Tunable electronic structure and surface states in rare-earth monobismuthides with partially filled f shell,”. Phys. Rev. B 98, 085103 (2018).

    ADS 

    Google Scholar
     

  • Source link