May 29, 2024
Engineered jumpers overcome biological limits via work multiplication – Nature

Engineered jumpers overcome biological limits via work multiplication – Nature

  • Aristotle. Problemata 3 12–19.

  • Morowitz, H. J. De motu animalium. Hosp. Pract. 11, 145–149 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  • Seifert, H. S. The lunar pogo stick. J. Spacecr. Rockets 4, 941–943 (1967).

    ADS 

    Google Scholar
     

  • Zhao, J. et al. MSU jumper: a single-motor-actuated miniature steerable jumping robot. IEEE Trans. Robot. 29, 602–614 (2013).


    Google Scholar
     

  • Niiyama, R., Nagakubo, A. & Kuniyoshi, Y. In Proc. IEEE Intl Conf. Robotics and Automation 2546–2551 (IEEE, 2007); https://doi.org/10.1109/ROBOT.2007.363848.

  • Scarfogliero, U., Stefanini, C. & Dario, P. In Proc. IEEE Intl Conf. Robotics and Automation 467–472 (IEEE, 2007); https://doi.org/10.1109/ROBOT.2007.363830.

  • Li, F. et al. Jumping like an insect: design and dynamic optimization of a jumping mini robot based on bio-mimetic inspiration. Mechatronics 22, 167–176 (2012).


    Google Scholar
     

  • Zhao, J., Xi, N., Gao, B., Mutka, M. W. & Xiao, L. In Proc. IEEE Intl Conf. Robotics and Automation 4614–4619 (IEEE, 2011); https://doi.org/10.1109/ICRA.2011.5980166.

  • Churaman, W. A., Currano, L. J., Morris, C. J., Rajkowski, J. E. & Bergbreiter, S. The first launch of an autonomous thrust-driven microrobot using nanoporous energetic silicon. J. Microelectromech. Syst. 21, 198–205 (2012).

    CAS 

    Google Scholar
     

  • Armour, R., Paskins, K., Bowyer, A., Vincent, J. & Megill, W. Jumping robots: a biomimetic solution to locomotion across rough terrain. Bioinsp. Biomim. 2, S65–S83 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • Bergbreiter, S. In 2008 IEEE/RSJ Intl Conf. Intelligent Robots and Systems (IROS) 4030–4035 (IEEE, 2008); https://doi.org/10.1109/IROS.2008.4651167.

  • Koh, J. S. et al. Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 349, 517–521 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Woodward, M. A. & Sitti, M. MultiMo-Bat: a biologically inspired integrated jumping-gliding robot. Int. J. Rob. Res. 33, 1511–1529 (2014).


    Google Scholar
     

  • Haldane, D. W., Plecnik, M. M., Yim, J. K. & Fearing, R. S. Robotic vertical jumping agility via series-elastic power modulation. Sci. Robot. 1, eaag2048 (2016).

    PubMed 

    Google Scholar
     

  • Zaitsev, V. et al. Locust-inspired miniature jumping robot. In 2015 IEEE/RSJ Intl Conf. Intelligent Robots and Systems (IROS) 553–558 (IEEE, 2015); https://doi.org/10.1109/IROS.2015.7353426.

  • Kovač, M., Fuchs, M., Guignard, A., Zufferey, J. C. & Floreano, D. In Proc. IEEE Intl Conf. Robotics and Automation 373–378 (IEEE, 2008); https://doi.org/10.1109/ROBOT.2008.4543236.

  • Kovač, M., Schlegel, M., Zufferey, J. C. & Floreano, D. Steerable miniature jumping robot. Auton. Robots 28, 295–306 (2010).


    Google Scholar
     

  • Burdick, J. & Fiorini, P. Minimalist jumping robots for celestial exploration. Int. J. Rob. Res. 22, 653–674 (2003).


    Google Scholar
     

  • Alexander, R. M. Leg design and jumping technique for humans, other vertebrates and insects. Phil. Trans. R. Soc. Lond. B. 347, 235–248 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Alexander, R. M. N. Simple models of human movement. Appl. Mech. Rev. 48, 461–470 (1995).

    ADS 

    Google Scholar
     

  • Scholz, M. N., Bobbert, M. F. & Knoek van Soest, A. J. Scaling and jumping: gravity loses grip on small jumpers. J. Theor. Biol. 240, 554–561 (2006).

    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Cerquiglini, S., Venerando, A., Wartenweiler, J. & Plagenhoef, S. Biomechanics III. In Medicine & Science in Sports & Exercise (ed. Hoerler, E.) vol. 6 iv (Karger AG, 1974).

  • Roberts, T. J. & Marsh, R. L. Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs. J. Exp. Biol. 206, 2567–2580 (2003).

    PubMed 

    Google Scholar
     

  • Bobbert, M. F. Effects of isometric scaling on vertical jumping performance. PLoS One 8, e71209 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azizi, E. & Roberts, T. J. Muscle performance during frog jumping: influence of elasticity on muscle operating lengths. Proc. R. Soc. B 277, 1523–1530 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennet-Clark, H. C. Scale effects in jumping animals. In Scale Effects in Animal Locomotion (ed. Pedley, T. J.) 185–201 (Academic, 1977).

  • Sutton, G. P. et al. Why do large animals never actuate their jumps with latch-mediated springs? Because they can jump higher without them. Integr. Comp. Biol. 59, 1609–1618 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Divi, S. et al. Latch-based control of energy output in spring actuated systems. J. R. Soc. Interface 17, 20200070 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longo, S. J. et al. Beyond power amplification: latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems. J. Exp. Biol. 222, jeb197889 (2019).

    PubMed 

    Google Scholar
     

  • Bennet-Clark, H. C. & Alder, G. M. The effect of air resistance on the jumping performance of insects. J. Exp. Biol. 82, 105–121 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • Stoeter, S. A. & Papanikolopoulos, N. Kinematic motion model for jumping scout robots. IEEE Trans. Robot. 22, 397–402 (2006).


    Google Scholar
     

  • Ilton, M. et al. The principles of cascading power limits in small, fast biological and engineered systems. Science 360, eaao1082 (2018).

    PubMed 

    Google Scholar
     

  • Gabriel, J. M. The effect of animal design on jumping performance. J. Zool. 204, 533–539 (1984).


    Google Scholar
     

  • Roberts, T. J. & Azizi, E. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J. Exp. Biol. 214, 353–361 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerratt, A. P. & Bergbreiter, S. Incorporating compliant elastomers for jumping locomotion in microrobots. Smart Mater. Struct. 22, 014010 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Greenspun, J. & Pister, K. S. J. First leaps of an electrostatic inchworm motor-driven jumping microrobot. In 2018 Solid-State Sensors, Actuators and Microsystems Workshop 159–162 (IEEE, 2018); https://doi.org/10.31438/trf.hh2018.45.

  • Greenspun, J. & Pister, K. S. J. in Proc. Intl Conf. Manipulation, Automation and Robotics at Small Scales (MARSS) (eds. Haliyo, S. et al.) 258–262 (IEEE, 2017); https://doi.org/10.1109/MARSS.2017.8001944.

  • Bergbreiter, S. & Pister, K. S. J. In Proc. IEEE Intl Conf. Robotics and Automation 447–453 (IEEE, 2007); https://doi.org/10.1109/ROBOT.2007.363827.

  • Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Ashby, M. Materials Selection in Mechanical Design 4th edn (Elsevier, 2010).

  • Hall‐Crags, E. C. B. An analysis of the jump of the lesser galago (Galago senegalensis). J. Zool. 147, 20–29 (1965).


    Google Scholar
     

  • Josephson, R. K. Contraction dynamics and power output of skeletal muscle. Annu. Rev. Physiol. 55, 527–546 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Seok, S., Wang, A., Otten, D. & Kim, S. In IEEE Intl Conf. Intelligent Robots and Systems 1970–1975 (IEEE, 2012); https://doi.org/10.1109/IROS.2012.6386252.

  • Miao, Z., Mo, J., Li, G., Ning, Y. & Li, B. Wheeled hopping robot with combustion-powered actuator. Int. J. Adv. Robot. Syst. https://doi.org/10.1177/1729881417745608 (2018).

  • Ackerman, E. Boston dynamics sand flea robot demonstrates astonishing jumping skills. IEEE Spectrum Robotics Blog https://spectrum.ieee.org/boston-dynamics-sand-flea-demonstrates-astonishing-jumping-skills (28 March 2012).

  • Dowling, K. Power Sources for Small Robots. Technical report no. CMU-RI-TR-97-02 (Carnegie Mellon University, 1997).

  • Marden, J. H. & Allen, L. R. Molecules, muscles, and machines: universal performance characteristics of motors. Proc. Natl. Acad. Sci. USA 99, 4161–4166 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirt, M. R., Jetz, W., Rall, B. C. & Brose, U. A general scaling law reveals why the largest animals are not the fastest. Nat. Ecol. Evol. 1, 1116–1122 (2017).

    PubMed 

    Google Scholar
     

  • Winslow, J., Hrishikeshavan, V. & Chopra, I. Design methodology for small-scale unmanned quadrotors. J. Aircr. 55, 1062–1070 (2018).


    Google Scholar
     

  • Dermitzakis, K., Carbajal, J. P. & Marden, J. H. Scaling laws in robotics. Procedia Comp. Sci. 7, 250–252 (2011).


    Google Scholar
     

  • Mitchell, H. H., Hamilton, T. S., Steggerda, F. R. & Bean, H. W. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. Biol. Chem. 158, 625–637 (1945).

    CAS 

    Google Scholar
     

  • Hunt, J. F., Zhang, H., Guo, Z. & Fu, F. Cantilever beam static and dynamic response comparison with mid-point bending for thin mdf composite panels. BioResources 8, 115–129 (2013).

    CAS 

    Google Scholar
     

  • Parry, D. A. & Brown, R. H. J. The jumping mechanism of salticid spiders. J. Exp. Biol. 36, 654–664 (1959).


    Google Scholar
     

  • Marsh, R. L. & John-Alder, H. B. Jumping performance of hylid frogs measured with high-speed cine film. J. Exp. Biol. 188, 131–141 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Evans, M. E. G. The jump of the click beetle (Coleoptera, Elateridae)—a preliminary study. J. Zool. 167, 319–336 (1972).


    Google Scholar
     

  • Brackenbury, J. & Hunt, H. Jumping in springtails: mechanism and dynamics. J. Zool. 229, 217–236 (1993).


    Google Scholar
     

  • Maitland, D. P. Locomotion by jumping in the Mediterranean fruit-fly larva Ceratitis capitata. Nature 355, 159–161 (1992).

    ADS 

    Google Scholar
     

  • Harty, T. H. The Role of the Vertebral Column during Jumping in Quadrupedal Mammals. PhD thesis, Oregon State Univ. (2010).

  • Schwaner, M. J., Lin, D. C. & McGowan, C. P. Jumping mechanics of desert kangaroo rats. J. Exp. Biol. 221, jeb186700 (2018).

    PubMed 

    Google Scholar
     

  • Katz, S. L. & Gosline, J. M. Ontogenetic scaling of jump performance in the african desert locust (Schistocerca gregaria). J. Exp. Biol. 177, 81–111 (1993).


    Google Scholar
     

  • Toro, E., Herrel, A., Vanhooydonck, B. & Irschick, D. J. A biomechanical analysis of intra- and interspecific scaling of jumping and morphology in Caribbean Anolis lizards. J. Exp. Biol. 206, 2641–2652 (2003).

    PubMed 

    Google Scholar
     

  • Essner, R. L. Three-dimensional launch kinematics in leaping, parachuting and gliding squirrels. J. Exp. Biol. 205, 2469–2477 (2002).

    PubMed 

    Google Scholar
     

  • Gregersen, C. S. & Carrier, D. R. Gear ratios at the limb joints of jumping dogs. J. Biomech. 37, 1011–1018 (2004).

    PubMed 

    Google Scholar
     

  • Burrows, M. & Dorosenko, M. Jumping mechanisms and strategies in moths (Lepidoptera). J. Exp. Biol. 218, 1655–1666 (2015).

    PubMed 

    Google Scholar
     

  • Bobbert, M. F., Gerritsen, K. G. M., Litjens, M. C. A. & Van Soest, A. J. Why is countermovement jump height greater than squat jump height? Med. Sci. Sports Exerc. 28, 1402–1412 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Brackenbury, J. & Wang, R. Ballistics and visual targeting in flea-beetles (Alticinae). J. Exp. Biol. 198, 1931–1942 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Burrows, M. Jumping performance of froghopper insects. J. Exp. Biol. 209, 4607–4621 (2006).

    PubMed 

    Google Scholar
     

  • Source link