May 7, 2024
Enhanced inner core fine-scale heterogeneity towards Earth’s centre – Nature

Enhanced inner core fine-scale heterogeneity towards Earth’s centre – Nature

  • Deguen, R. Structure and dynamics of Earth’s inner core. Earth Planet. Sci. Lett. 333, 211–225 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Cormier, V. F. Texture of the uppermost inner core from forward-and back-scattered seismic waves. Earth Planet. Sci. Lett. 258, 442–453 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, X. & Song, X. Tomographic inversion for three-dimensional anisotropy of Earth’s inner core. Phys. Earth Planet. Inter. 167, 53–70 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Deuss, A. Heterogeneity and anisotropy of Earth’s inner core. Annu. Rev. Earth Planet. Sci. 42, 103–126 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Souriau, A & Calvet, M. Treatise on Geophysics 2nd edn, Vol. 1 (ed. Schubert, G.) Ch. 1.23 (Elsevier, 2015).


    Google Scholar
     

  • Tkalčić, H. Complex inner core of the Earth: the last frontier of global seismology. Rev. Geophys. 53, 59–94 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Vidale, J. E. & Earle, P. S. Fine-scale heterogeneity in the Earth’s inner core. Nature 404, 273–275 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Monnereau, M., Calvet, M., Margerin, L. & Souriau, A. Lopsided growth of Earth’s inner core. Science 328, 1014–1017 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Calvet, M. & Margerin, L. Shape preferred orientation of iron grains compatible with Earth’s uppermost inner core hemisphericity. Earth Planet. Sci. Lett. 481, 395–403 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koper, K. D., Franks, J. M. & Dombrovskaya, M. Evidence for small-scale heterogeneity in Earth’s inner core from a global study of PKiKP coda waves. Earth Planet. Sci. Lett. 228, 227–241 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leyton, F. & Koper, K. D. Using PKiKP coda to determine inner core structure. 2. Determination of QC. J. Geophys. Res. Solid Earth 112, B05317 (2007).

    ADS 

    Google Scholar
     

  • Peng, Z., Koper, K. D., Vidale, J. E., Leyton, F., & Shearer, P. Inner-core fine-scale structure from scattered waves recorded by LASA. J. Geophys. Res. Solid Earth 113, B09312 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Wang, W. & Vidale, J. E. An initial map of fine-scale heterogeneity in the Earth’s inner core. Nat. Geosci. 15, 240–244 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, W. & Irving, J. C. Using PKiKP coda to study heterogeneity in the top layer of the inner core’s western hemisphere. Geophys. J. Int. 209, 672–687 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wu, S. M., Pang, G., Koper, K. D. & Euler, G. A search for large‐scale variations in the fine‐scale structure of Earth’s inner core. J. Geophys. Res. Solid Earth 127, e2022JB024420 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shearer, P. M. & Earle, P. S. The global short-period wavefield modelled with a Monte Carlo seismic phonon method. Geophys. J. Int. 158, 1103–1117 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Souriau, A. & Souriau, M. Ellipticity and density at the inner core boundary from subcritical PKiKP and PcP data. Geophys. J. Int. 98, 39–54 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Tanaka, S. & Hamaguchi, H. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP (BC)–PKP (DF) times. J. Geophys. Res. Solid Earth 102, 2925–2938 (1997).

    Article 

    Google Scholar
     

  • Irving, J. C. E. Imaging the inner core under Africa and Europe. Phys. Earth Planet. Inter. 254, 12–24 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Przybilla, J., Wegler, U. & Korn, M. Estimation of crustal scattering parameters with elastic radiative transfer theory. Geophys. J. Int. 178, 1105–1111 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Sato, H., Fehler, M. C. & Maeda, T. Seismic Wave Propagation and Scattering in the Heterogeneous Earth. Vol. 496, (Springer, 2012).

  • Kennett, B. L., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Aubert, J., Amit, H., Hulot, G. & Olson, P. Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature 454, 758–761 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayeda, K. & Walter, W. R. Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes. J. Geophys. Res. Solid Earth 101, 11195–11208 (1996).

    Article 

    Google Scholar
     

  • Beghein, C. & Trampert, J. Robust normal mode constraints on inner-core anisotropy from model space search. Science 299, 552–555 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishii, M. & Dziewoński, A. M. The innermost inner core of the earth: evidence for a change in anisotropic behavior at the radius of about 300 km. Proc. Natl Acad. Sci. USA 99, 14026–14030 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephenson, J., Tkalčić, H. & Sambridge, M. Evidence for the innermost inner core: robust parameter search for radially varying anisotropy using the Neighbourhood Algorithm. J. Geophys. Res. Solid Earth 126, e2020JB020545 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yoshida, S., Sumita, I. & Kumazawa, M. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. J. Geophys. Res. Solid Earth 101, 28085–28103 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Deguen, R. & Cardin, P. Tectonic history of the Earth’s inner core preserved in its seismic structure. Nat. Geosci. 2, 419–422 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huguet, L. Van, Orman, J. A., Hauck, S. A. II & Willard, M. A. Earth’s inner core nucleation paradox. Earth Planet. Sci. Lett. 487, 9–20 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Davies, C. J., Pozzo, M. & Alfè, D. Assessing the inner core nucleation paradox with atomic-scale simulations. Earth Planet. Sci. Lett. 507, 1–9 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, Y., Zhang, F., Mendelev, M. I., Wentzcovitch, R. M. & Ho, K. M. Two-step nucleation of the Earth’s inner core. Proc. Natl Acad. Sci. USA 119, e2113059119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lasbleis, M., Kervazo, M. & Choblet, G. The fate of liquids trapped during the Earth’s inner core growth. Geophys. Res. Lett. 47, e2019GL085654 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Labrosse, S. Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet Inter. 247, 36–55 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ekström, G., Nettles, M. & Dziewoński, A. M. The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Margerin, L., Campillo, M. & Van Tiggelen, B. Monte Carlo simulation of multiple scattering of elastic waves. J. Geophys. Res. Solid Earth 105, 7873–7892 (2000).

    Article 

    Google Scholar
     

  • Mancinelli, N. & Shearer, P. Scattered energy from a rough core‐mantle boundary modeled by a Monte Carlo seismic particle method: application to PKKP precursors. Geophys. Res. Lett. 43, 7963–7972 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Takeuchi, N. et al. Determination of intrinsic attenuation in the oceanic lithosphere-asthenosphere system. Science 358, 1593–1596 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, W. & Shearer, P. M. Using direct and coda wave envelopes to resolve the scattering and intrinsic attenuation structure of Southern California. J. Geophys. Res. Solid Earth 122, 7236–7251 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Weaver, R. L. Diffusivity of ultrasound in polycrystals. J. Mech. Phys. Solids 38, 55–86 (1990).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Hedlin, M. A. & Shearer, P. M. An analysis of large‐scale variations in small‐scale mantle heterogeneity using Global Seismographic Network recordings of precursors to PKP. J. Geophys. Res. Solid Earth 105, 13655–13673 (2000).

    Article 

    Google Scholar
     

  • Kelton, K. & Greer, A. L. Nucleation in Condensed Matter: Applications in Materials and Biology (Elsevier, 2010).

  • Rosenfeld, D. & Woodley, W. L. Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature 405, 440–442 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. & Goncharov, A. F. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K. & Ohishi, Y. Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature 534, 95–98 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sumita, I., Yoshida, S., Kumazawa, M. & Hamano, Y. A model for sedimentary compaction of a viscous medium and its application to inner-core growth. Geophys. J. Int. 124, 502–524 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Source link