May 25, 2024
Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111) – Nature

Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111) – Nature

  • Lee, J. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, T. R. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43–47 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. Z. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).

    CAS 

    Google Scholar
     

  • Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, T. A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, P. F. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14, 5036–5045 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Choi, S. H. et al. Epitaxial single-crystal growth of transition metal dichalcogenide monolayers via the atomic sawtooth Au surface. Adv. Mater. 33, 2006601 (2021).

    CAS 

    Google Scholar
     

  • Li, M. Y., Su, S. K., Wong, H. S. P. & Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 567, 169–170 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. M. et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Uchida, Y. et al. Controlled growth of large-area uniform multilayer hexagonal boron nitride as an effective 2D substrate. ACS Nano 12, 6236–6244 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 4, 2541 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ko, H. et al. Toward non-gas-permeable hBN film growth on smooth Fe surface. 2D Mater. 8, 034003 (2021).

    CAS 

    Google Scholar
     

  • Ahn, S. et al. Prevention of transition metal dichalcogenide photodegradation by encapsulation with h-BN layers. ACS Nano 10, 8973–8979 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Y. Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).


    Google Scholar
     

  • Caneva, S. et al. Controlling catalyst bulk reservoir effects for monolayer hexagonal boron nitride CVD. Nano Lett. 16, 1250–1261 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Y. M. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134–4139 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chatterjee, S. et al. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions. Chem. Mater. 23, 4414–4416 (2011).

    CAS 

    Google Scholar
     

  • Ismach, A. et al. Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano 6, 6378–6385 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Y. et al. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS Nano 7, 5199–5206 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, K. K. et al. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583–8590 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Jang, A. R. et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 16, 3360–3366 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. H. et al. Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nat. Commun. 10, 1188 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Z. Y. et al. Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates. Nat. Commun. 11, 849 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, S. et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 362, 1021–1025 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. Electroless plated Ni–Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy 19, 98–107 (2016).

    CAS 

    Google Scholar
     

  • Rogl, P. & Schuster, J. C. Boron Nitride and Silicon Nitride Systems 79–86 (European Research Office of the U.S. Army, 1991).

  • Kowanda, C. & Speidel, M. O. Solubility nitrogen in liquid nickel and binary Ni–Xi alloys (Xi=Cr, Mo, W, Mn, Fe, Co) under elevated pressure. Scr. Mater. 48, 1073–1078 (2003).

    CAS 

    Google Scholar
     

  • Park, J. H. et al. Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano 8, 8520–8528 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Battezzati, L., Antonione, C. & Baricco, M. Undercooling of Ni-B and Fe-B alloys and their metastable phase diagrams. J. Alloys Compd. 247, 164–171 (1997).

    CAS 

    Google Scholar
     

  • Liu, F., Xu, J. F., Zhang, D. & Jian, Z. Y. Solidification of highly undercooled hypereutectic Ni-Ni3B alloy melt. Metall. Mater. Trans. A 45, 4810–4819 (2014).

    CAS 

    Google Scholar
     

  • Villars, P. & Calvert, L. D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International, 1991).

  • Alem, N. et al. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425 (2009).

    ADS 

    Google Scholar
     

  • Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    CAS 

    Google Scholar
     

  • Toth, M. & Aharonovich, I. Single photon sources in atomically thin materials. Annu. Rev. Phys. Chem. 70, 123–142 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bets, K. V., Gupta, N. & Yakobsion, B. I. How the complementarity at vicinal steps enables growth of 2D monocrystals. Nano Lett. 19, 2027–2031 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, J., Zhang, L. N., Dai, X. Y. & Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 11, 5862 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. N., Peng, P. & Ding, F. Epitaxial growth of 2D materials on high-index substrate surfaces. Adv. Funct. Mater. 31, 2100503 (2021).

    CAS 

    Google Scholar
     

  • Gao, J. F., Yip, J., Zhao, J. J., Yakobson, B. I. & Ding, F. Graphene nucleation on transition metal surface: structure transformation and role of the metal step edge. J. Am. Chem. Soc. 133, 5009–5015 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Q. H., Yakobson, B. I. & Ding, F. Edge-catalyst wetting and orientation control of graphene growth by chemical vapor deposition growth. J. Phys. Chem. Lett. 5, 3093–3099 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, W., Ahn, J. Y., Oh, J., Shim, J. H. & Ryu, S. Second-harmonic Young’s interference in atom-thin heterocrystals. Nano Lett. 20, 8825–8831 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorbachev, R. V. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Source link