April 26, 2024
Evaluating ribosomal frameshifting in CCR5 mRNA decoding – Nature

Evaluating ribosomal frameshifting in CCR5 mRNA decoding – Nature

  • Atkins, J. F., Loughran, G., Bhatt, P. R., Firth, A. E. & Baranov, P. V. Ribosomal frameshifting and transcriptional slippage: from genetic steganography and cryptography to adventitious use. Nucleic Acids Res. 44, 7007–7078 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belew, A. T. et al. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 512, 265–269 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belew, A. T. & Dinman, J. D. Cell cycle control (and more) by programmed −1 ribosomal frameshifting: implications for disease and therapeutics. Cell Cycle 14, 172–178 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grentzmann, G., Ingram, J. A., Kelly, P. J., Gesteland, R. F. & Atkins, J. F. A dual-luciferase reporter system for studying recoding signals. RNA 4, 479–486 (1998).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michel, A. M., Kiniry, S. J., O’Connor, P. B. F., Mullan, J. P. & Baranov, P. V. GWIPS-viz: 2018 update. Nucleic Acids Res. 46, D823–D830 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kiniry, S. J., O’Connor, P. B. F., Michel, A. M. & Baranov, P. V. Trips-viz: a transcriptome browser for exploring Ribo-seq data. Nucleic Acids Res. 47, D847–D852 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Su, X. et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat. Immunol. 16, 838–849 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loughran, G., Howard, M. T., Firth, A. E. & Atkins, J. F. Avoidance of reporter assay distortions from fused dual reporters. RNA 23, 1285–1289 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biswas, P., Jiang, X., Pacchia, A. L., Dougherty, J. P. & Peltz, S. W. The human immunodeficiency virus type 1 ribosomal frameshifting site is an invariant sequence determinant and an important target for antiviral therapy. J. Virol. 78, 2082–2087 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y., Abriola, L., Surovtseva Y. V., Lindenbach, B. D. & Guo, J. U. Restriction of SARS-CoV-2 replication by targeting programmed −1 ribosomal frameshifting in vitro. Preprint at bioRxiv 10.21.349225 (2020).

  • Bhatt, P. R. et al. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 372, 1306–1313 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kendra, J. A. et al. Functional and structural characterization of the chikungunya virus translational recoding signals. J. Biol. Chem. 293, 17536–17545 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article 

    Google Scholar
     

  • Source link