May 27, 2024
Evidence for unconventional superconductivity in twisted trilayer graphene – Nature

Evidence for unconventional superconductivity in twisted trilayer graphene – Nature

  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Khalaf, E., Kruchkov, A. J., Tarnopolsky, G. & Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 100, 085109 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Li, X., Wu, F. & MacDonald, A. H. Electronic structure of single-twist trilayer graphene. Preprint at https://arxiv.org/abs/1907.12338 (2019).

  • Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Carr, S. et al. Ultraheavy and ultrarelativistic dirac quasiparticles in sandwiched graphenes. Nano Lett. 20, 3030–3038 (2020).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fischer, A. et al. Unconventional superconductivity in magic-angle twisted trilayer graphene. npj Quantum Mater. 7, 1–10 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Phong, V. T., Pantaleo´n, P. A., Cea, T. & Guinea, F. Band structure and superconductivity in twisted trilayer graphene. Phys. Rev. B 104, L121116 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Choi, Y. et al. Interaction-driven band flattening and correlated phases in twisted bilayer graphene. Nat. Phys. 17, 1375–1381 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Jung, S. et al. Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots. Nat. Phys. 7, 245–251 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Eagles, D. M. Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors. Phys. Rev. 186, 456–463 (1969).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Renner, C., Revaz, B., Genoud, J.-Y., Kadowaki, K. & Fischer, Ø. Pseudogap precursor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 80, 149–152 (1998).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Rodan-Legrain, D. et al. Highly tunable junctions and non-local Josephson effect in magic-angle graphene tunnelling devices. Nat. Nanotechnol. 16, 769–775 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dynes, R. C., Narayanamurti, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Yeh, N.-C. et al. Evidence of doping-dependent pairing symmetry in cuprate superconductors. Phys. Rev. Lett. 87, 087003 (2001).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Botelho, S. S. & Sá de Melo, C. A. R. Lifshitz transition in d-wave superconductors. Phys. Rev. B 71, 134507 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Borkowski, L. & de Melo, C. S. Evolution from the BCS to the Bose–Einstein limit in a d-wave superconductor at T=0. Acta Phys. Pol. A 6, 691–698 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS–BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Randeria, M. & Taylor, E. Crossover from Bardeen–Cooper–Schrieffer to Bose–Einstein condensation and the unitary Fermi gas. Annu. Rev. Condens. Matter Phys. 5, 209–232 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Schrieffer, J. R., Scalapino, D. J. & Wilkins, J. W. Effective tunneling density of states in superconductors. Phys. Rev. Lett. 10, 336–339 (1963).

    Article 
    ADS 

    Google Scholar
     

  • McMillan, W. L. & Rowell, J. M. Lead phonon spectrum calculated from superconducting density of states. Phys. Rev. Lett. 14, 108–112 (1965).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Lee, J. et al. Interplay of electron–lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ. Nature 442, 546–550 (2006).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Niestemski, F. C. et al. A distinct bosonic mode in an electron-doped high-transition-temperature superconductor. Nature 450, 1058–1061 (2007).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chi, S. et al. Scanning tunneling spectroscopy of superconducting LiFeAs single crystals: evidence for two nodeless energy gaps and coupling to a bosonic mode. Phys. Rev. Lett. 109, 087002 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan, L. et al. Evidence of a spin resonance mode in the iron-based superconductor Ba0.6K0.4Fe2As2 from scanning tunneling spectroscopy. Phys. Rev. Lett. 108, 227002 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zasadzinski, J. F. et al. Correlation of tunneling spectra in Bi2Sr2CaCu2O8+δ with the resonance spin excitation. Phys. Rev. Lett. 87, 067005 (2001).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ramires, A. & Lado, J. L. Emulating heavy fermions in twisted trilayer graphene. Phys. Rev. Lett. 127, 026401 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Carbotte, J. P. Properties of boson-exchange superconductors. Rev. Mod. Phys. 62, 1027–1157 (1990).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Song, C.-L. & Hoffman, J. E. Pairing insights in iron-based superconductors from scanning tunneling microscopy. Curr. Opin. Solid State Mater. Sci. 17, 39–48 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Scalapino, D. J., Schrieffer, J. R. & Wilkins, J. W. Strong-coupling superconductivity. I. Phys. Rev. 148, 263–279 (1966).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Yu, G., Li, Y., Motoyama, E. M. & Greven, M. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nat. Phys. 5, 873–875 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Anderson, P. W. & Ong, N. P. Theory of asymmetric tunneling in the cuprate superconductors. J. Phys. Chem. Solids 67, 1–5 (2006).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Eschrig, M. & Norman, M. R. Effect of the magnetic resonance on the electronic spectra of high-Tc superconductors. Phys. Rev. B 67, 144503 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333 (2018).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, M. et al. Discrete energy levels of Caroli-de Gennes-Matricon states in quantum limit in FeTe0.55Se0.45. Nat. Commun. 9, 970 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guinea, F. & Walet, N. R. Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proc. Natl Acad. Sci. USA 115, 13174–13179 (2018).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rademaker, L., Abanin, D. A. & Mellado, P. Charge smoothening and band flattening due to Hartree corrections in twisted bilayer graphene. Phys. Rev. B 100, 205114 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Goodwin, Z. A. H., Vitale, V., Liang, X., Mostofi, A. A. & Lischner, J. Hartree theory calculations of quasiparticle properties in twisted bilayer graphene. Electron. Struct. 2, 034001 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Caldero´n, M. J. & Bascones, E. Interactions in the 8-orbital model for twisted bilayer graphene. Phys. Rev. B 102, 155149 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Christos, M., Sachdev, S. & Scheurer, M. S. Correlated insulators, semimetals, and superconductivity in twisted trilayer graphene. Phys. Rev. X 12, 021018 (2022).

  • Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewandowski, C., Chowdhury, D. & Ruhman, J. Pairing in magic-angle twisted bilayer graphene: role of phonon and plasmon umklapp. Phys. Rev. B 103, 235401 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Chou, Y.-Z., Wu, F., Sau, J. D. & Das Sarma, S. Correlation-induced triplet pairing superconductivity in graphene-based moiré systems. Phys. Rev. Lett. 127, 217001 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Choi, Y. W. & Choi, H. J. Dichotomy of electron–phonon coupling in graphene moiré flat bands. Phys. Rev. Lett. 127, 167001 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Reznik, D. et al. Electron–phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors. Nature 440, 1170–1173 (2006).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Le Tacon, M. et al. Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nat. Phys. 10, 52–58 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gabovich, A. M. & Voitenko, A. I. Charge density waves as the origin of dip–hump structures in the differential tunneling conductance of cuprates: the case of d-wave superconductivity. Physica C 503, 7–13 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 264–271 (2021).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Source link